Неравенство Маркова — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Формулировка)
м (Удалил раздел доказательство, а само доказательство оформил как приложение к теореме)
Строка 25: Строка 25:
 
:<tex> \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
 
:<tex> \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
 
}}
 
}}
 
== Доказательство ==
 
 
Возьмем для доказательства следующее понятие:
 
 
Пусть <tex> A</tex> - некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет распределение Бернулли с параметром
 
  <tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,
 
и ее математическое ожидание равно вероятности успеха
 
<tex> p = \mathbb P\mathrm (A) </tex>.
 
Индикаторы прямого и противоположного событий связаны равенством <tex>I(A) + I(\overline A) = 1</tex>. Поэтому
 
  <tex>|\xi|=|\xi|\times I(|\xi|<x)+|\xi|\times I(|\xi|\geqslant x)\geqslant |\xi|\times I(|\xi|\geqslant x)\geqslant x\times I(|\xi| \geqslant x)</tex>.
 
Тогда
 
  <tex>\mathbb E\mathrm |\xi|\geqslant \mathbb E\mathrm(x\times I(|\xi|\geqslant x)) = x\times \mathbb P\mathrm (|\xi|\geqslant x)</tex>.
 
Разделим обе части на <tex>x</tex>:
 
  <tex> \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
 
  
 
== Примеры ==
 
== Примеры ==

Версия 18:36, 4 июня 2017

Неравенство Маркова

Определение:
Нера́венство Ма́ркова в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Формулировка

Теорема (Неравенство Маркова):
Пусть случайная величина [math]X: \Omega \rightarrow \mathbb R\mathrm+[/math] определена на вероятностном пространстве ([math]\Omega[/math], [math]F[/math], [math]\mathbb R[/math]), и ее математическое ожидание [math] \mathbb E\mathrm |\xi|\lt \mathcal {1}[/math]. Тогда [math]\forall ~x \gt 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \frac {\mathbb E\mathrm |\xi|}{x} [/math]
Доказательство:
[math]\triangleright[/math]

Возьмем для доказательства следующее понятие:

Пусть [math] A[/math] - некоторое событие. Назовем индикатором события [math]A[/math] случайную величину [math]I[/math], равную единице если событие [math]A[/math] произошло, и нулю в противном случае. По определению величина [math]I(A)[/math] имеет распределение Бернулли с параметром

[math] p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)[/math],

и ее математическое ожидание равно вероятности успеха [math] p = \mathbb P\mathrm (A) [/math]. Индикаторы прямого и противоположного событий связаны равенством [math]I(A) + I(\overline A) = 1[/math]. Поэтому

[math]|\xi|=|\xi|\times I(|\xi|\lt x)+|\xi|\times I(|\xi|\geqslant x)\geqslant |\xi|\times I(|\xi|\geqslant x)\geqslant x\times I(|\xi| \geqslant x)[/math].

Тогда

[math] \mathbb E |\xi|\geqslant \mathbb E\mathrm(x\times I(|\xi|\geqslant x)) = x\times \mathbb P\mathrm (|\xi|\geqslant x) [/math].

Разделим обе части на [math]x[/math]:

[math] \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} [/math]
[math]\triangleleft[/math]

Примеры

Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.

 [math]\mathbb P\mathrm (|\xi|\ge 15)\le 3/15 = 0.2[/math]

Неравенство Чебышева

Определение:
Неравенство Чебышева является следствием Неравенства Маркова и утверждает, что случайная величина в основном принимает значения, близкие к значению математического ожидания. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.

Формулировка

Если [math]\mathbb E\mathrm \xi^2\lt \mathcal 1[/math], то [math]\forall x \gt 0[/math] будет выполнено

[math]\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \ge x) \le \frac {\mathbb D\mathrm \xi}{x^2}[/math]

Доказательство

Для [math]x\gt 0[/math] неравенство [math]|\xi-\mathbb E\mathrm \xi| \ge x[/math] равносильно неравенству [math](\xi-\mathbb E\mathrm \xi)^2 \ge x^2[/math], поэтому

 [math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \ge x) = \mathbb P\mathrm((\xi-\mathbb E\mathrm \xi)^2 \ge x^2 ) \le \frac {\mathbb E\mathrm(\xi-\mathbb E\mathrm\xi)^2}{x^2} = \frac {\mathbb D\mathrm \xi}{x^2}[/math]

Следствие

Как следствие получим так называемое "правило трех сигм",которое означает, что вероятность случайной величины отличаться от своего математического ожидания более чем на три корня из дисперсии мала.

Рассмотрим такое утверждение:

 Если [math]\mathbb E\mathrm \xi^2 \lt  \mathcal {1}[/math], то 
 [math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \le 3\sqrt{\mathbb D\mathrm \xi})\ge \frac {8}{9}[/math].
 

Доказательство: Согласно неравенству Чебышева

[math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|\ge 3\sqrt{\mathbb D\mathrm \xi})\le \frac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \frac {1} {9}[/math]

Отсюда заметим, что вероятность отклониться значению случайной величины от значения математического ожидания меньше чем [math]\frac {1}{9}[/math]