Матрица инцидентности графа — различия между версиями
DrozdovVA (обсуждение | вклад) (добавлен пример) |
DrozdovVA (обсуждение | вклад) м |
||
Строка 46: | Строка 46: | ||
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр. | Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр. | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Основные определения теории графов]] |
Версия 01:29, 22 декабря 2010
Содержание
Инцидентность ребра и вершины
Определение: |
Инцидентность - отношение между ребром и его концевыми вершинами, т. е. если в графе | - вершины, а - соединяющее их ребро (e = (u,v)), то вершина u и ребро e инцидентны, вершина v и ребро e также инцидентны.
Определения для ориентированного и неориентированного графов
Определение: |
Матрицей инцидентности (инциденций) неориентированного графа называется матрица | , для которой , если вершина инцидентна ребру , в противном случае .
Определение: |
Матрицей инцидентности (инциденций) ориентированного графа называется матрица | , для которой , если вершина является началом дуги , , если является концом дуги , в остальных случаях .
Пример
Граф | Матрица инцидентности | Ориентированный граф | Матрица инцидентности |
---|---|---|---|
Источники
Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.