Неравенство Маркова — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(см. Также и Источники информации)
м (Последние правки)
Строка 3: Строка 3:
  
 
   {{Определение
 
   {{Определение
   |definition = '''Нера́венство Ма́ркова'''(англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её [[Математическое ожидание случайной величины| математического ожидания]]. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно
+
   |definition = '''Нера́венство Ма́ркова''' (англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её [[Математическое ожидание случайной величины| математического ожидания]]. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно
 
  явным образом.
 
  явным образом.
 
}}
 
}}
Строка 9: Строка 9:
 
| id = thMark  
 
| id = thMark  
 
| about = Неравенство Маркова
 
| about = Неравенство Маркова
| statement = Пусть случайная величина <tex>X: \Omega \rightarrow \mathbb R\mathrm+</tex> определена на [[Вероятностное пространство, элементарный исход, событие|вероятностном пространстве]] (<tex>\Omega</tex>, <tex>F</tex>, <tex>\mathbb R</tex>), и ее [[Математическое ожидание случайной величины| математическое ожидание]] <tex> \mathbb E\mathrm |\xi|<\mathcal {1}</tex>. Тогда  
+
| statement = Пусть случайная величина <tex>X: \Omega \rightarrow \mathbb R\mathrm+</tex> определена на [[Вероятностное пространство, элементарный исход, событие|вероятностном пространстве]] (<tex>\Omega</tex>, <tex>F</tex>, <tex>\mathbb R</tex>), и ее [[Математическое ожидание случайной величины| математическое ожидание]] <tex> \mathbb E\mathrm |\xi|<\mathcal {1}</tex>. Тогда:
  <tex>\forall ~x > 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
+
<tex>\forall ~x > 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
где  
+
где:
: <tex> x </tex> - константа соответствующая некоторому событию в терминах [[Математическое ожидание случайной величины| математического ожидания]]
+
: <tex> x </tex> {{---}} константа соответствующая некоторому событию в терминах [[Математическое ожидание случайной величины| математического ожидания]]
: <tex> \xi </tex> - случайная величина  
+
: <tex> \xi </tex> {{---}} случайная величина  
: <tex> \mathbb P\mathrm(|\xi| \geqslant x)</tex> - вероятность отклонения модуля случайной величины от <tex> x </tex>
+
: <tex> \mathbb P\mathrm(|\xi| \geqslant x)</tex> {{---}} вероятность отклонения модуля случайной величины от <tex> x </tex>
: <tex>\mathbb E\mathrm |\xi|</tex> - [[Математическое ожидание случайной величины| математическое ожидание]] случайной величины
+
: <tex>\mathbb E\mathrm |\xi|</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] случайной величины
 
| proof = Возьмем для доказательства следующее понятие:
 
| proof = Возьмем для доказательства следующее понятие:
  
Пусть <tex> A</tex> - некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет распределение Бернулли с параметром  
+
Пусть <tex> A</tex> {{---}} некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет распределение Бернулли с параметром:
 
:<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,  
 
:<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>,  
 
и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха  
 
и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха  
Строка 30: Строка 30:
 
}}
 
}}
  
== Примеры ==
+
== Пример ==
  
 
Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.
 
Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.
Строка 38: Строка 38:
  
 
  {{Определение
 
  {{Определение
  |definition = '''Неравенство Чебышева'''(англ. Chebyshev's inequality) является следствием [[#thMark|неравенства Маркова]] и утверждает, что случайная величина в основном принимает значения, близкие к значению [[Математическое ожидание случайной величины| математического ожидания]]. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.
+
  |definition = '''Неравенство Чебышева''' (англ. Chebyshev's inequality) является следствием [[#thMark|неравенства Маркова]] и утверждает, что случайная величина в основном принимает значения, близкие к значению [[Математическое ожидание случайной величины| математического ожидания]]. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.
 
}}  
 
}}  
 
   
 
   
Строка 46: Строка 46:
 
Если <tex>\mathbb E\mathrm \xi^2<\mathcal 1</tex>, то <tex>\forall x > 0</tex> будет выполнено
 
Если <tex>\mathbb E\mathrm \xi^2<\mathcal 1</tex>, то <tex>\forall x > 0</tex> будет выполнено
 
    
 
    
<tex>\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) \leqslant \dfrac {\mathbb D\mathrm \xi}{x^2}</tex>
+
:<tex>\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) \leqslant \dfrac {\mathbb D\mathrm \xi}{x^2}</tex>
где  
+
где:
: <tex>\mathbb E\mathrm \xi^2</tex> - [[Математическое ожидание случайной величины| математическое ожидание]] квадрата случайного события.
+
: <tex>\mathbb E\mathrm \xi^2</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] квадрата случайного события.
: <tex>E\mathrm \xi</tex> - [[Математическое ожидание случайной величины| математическое ожидание]] случайного события   
+
: <tex>E\mathrm \xi</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] случайного события   
: <tex> P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) </tex> - вероятность отклонения случайного события от его [[Математическое ожидание случайной величины| математического ожидания]] хотя бы на <tex> x</tex>  
+
: <tex> P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) </tex> {{---}} вероятность отклонения случайного события от его [[Математическое ожидание случайной величины| математического ожидания]] хотя бы на <tex> x</tex>  
: <tex> \mathbb D\mathrm \xi </tex> - [[Дисперсия случайной величины|дисперсия случайного события]]
+
: <tex> \mathbb D\mathrm \xi </tex> {{---}} [[Дисперсия случайной величины|дисперсия случайного события]]
 
|proof =  
 
|proof =  
 
Для <tex>x>0</tex> неравенство  <tex>|\xi-\mathbb E\mathrm \xi| \geqslant x</tex> равносильно неравенству <tex>(\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2</tex>, поэтому  
 
Для <tex>x>0</tex> неравенство  <tex>|\xi-\mathbb E\mathrm \xi| \geqslant x</tex> равносильно неравенству <tex>(\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2</tex>, поэтому  
Строка 59: Строка 59:
 
== Следствие ==
 
== Следствие ==
  
Как следствие получим так называемое "правило трех сигм",которое означает, что вероятность случайной величины отличаться от своего [[Математическое ожидание случайной величины| математического ожидания]] более чем на три корня из [[Дисперсия случайной величины|дисперсии]] мала.  
+
Как следствие получим так называемое "правило трех сигм", которое означает, что вероятность случайной величины отличаться от своего [[Математическое ожидание случайной величины| математического ожидания]] более чем на три корня из [[Дисперсия случайной величины|дисперсии]] мала.  
  
 
{{Утверждение
 
{{Утверждение
Строка 84: Строка 84:
 
*[https://en.wikipedia.org/wiki/Chebyshev%27s_inequality Wikipedia {{---}} Chebyshev's inequality]
 
*[https://en.wikipedia.org/wiki/Chebyshev%27s_inequality Wikipedia {{---}} Chebyshev's inequality]
 
*[https://www.probabilitycourse.com/chapter6/6_2_2_markov_chebyshev_inequalities.php Markov and Chebyshev Inequalities]
 
*[https://www.probabilitycourse.com/chapter6/6_2_2_markov_chebyshev_inequalities.php Markov and Chebyshev Inequalities]
 +
 +
[[Категория: Дискретная математика и алгоритмы]]
 +
[[Категория: Теория вероятности]]

Версия 21:23, 4 июня 2017

Неравенство Маркова

Определение:
Нера́венство Ма́ркова (англ. Markov's inequality) в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Теорема (Неравенство Маркова):
Пусть случайная величина [math]X: \Omega \rightarrow \mathbb R\mathrm+[/math] определена на вероятностном пространстве ([math]\Omega[/math], [math]F[/math], [math]\mathbb R[/math]), и ее математическое ожидание [math] \mathbb E\mathrm |\xi|\lt \mathcal {1}[/math]. Тогда:
[math]\forall ~x \gt 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} [/math]

где:

[math] x [/math] — константа соответствующая некоторому событию в терминах математического ожидания
[math] \xi [/math] — случайная величина
[math] \mathbb P\mathrm(|\xi| \geqslant x)[/math] — вероятность отклонения модуля случайной величины от [math] x [/math]
[math]\mathbb E\mathrm |\xi|[/math] математическое ожидание случайной величины
Доказательство:
[math]\triangleright[/math]

Возьмем для доказательства следующее понятие:

Пусть [math] A[/math] — некоторое событие. Назовем индикатором события [math]A[/math] случайную величину [math]I[/math], равную единице если событие [math]A[/math] произошло, и нулю в противном случае. По определению величина [math]I(A)[/math] имеет распределение Бернулли с параметром:

[math] p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)[/math],

и ее математическое ожидание равно вероятности успеха [math] p = \mathbb P\mathrm (A) [/math]. Индикаторы прямого и противоположного событий связаны равенством [math]I(A) + I(\overline A) = 1[/math]. Поэтому

[math]|\xi|=|\xi|\times I(|\xi|\lt x)+|\xi|\times I(|\xi|\geqslant x)\geqslant |\xi|\times I(|\xi|\geqslant x)\geqslant x\times I(|\xi| \geqslant x)[/math].

Тогда

[math] \mathbb E |\xi|\geqslant \mathbb E\mathrm(x\times I(|\xi|\geqslant x)) = x\times \mathbb P\mathrm (|\xi|\geqslant x) [/math].

Разделим обе части на [math]x[/math]:

[math] \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} [/math]
[math]\triangleleft[/math]

Пример

Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.

[math]\mathbb P\mathrm (|\xi|\geqslant 15)\leqslant 3/15 = 0.2[/math]

Неравенство Чебышева

Определение:
Неравенство Чебышева (англ. Chebyshev's inequality) является следствием неравенства Маркова и утверждает, что случайная величина в основном принимает значения, близкие к значению математического ожидания. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.


Теорема (Неравенство Чебышева):
Если [math]\mathbb E\mathrm \xi^2\lt \mathcal 1[/math], то [math]\forall x \gt 0[/math] будет выполнено
[math]\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) \leqslant \dfrac {\mathbb D\mathrm \xi}{x^2}[/math]

где:

[math]\mathbb E\mathrm \xi^2[/math] математическое ожидание квадрата случайного события.
[math]E\mathrm \xi[/math] математическое ожидание случайного события
[math] P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) [/math] — вероятность отклонения случайного события от его математического ожидания хотя бы на [math] x[/math]
[math] \mathbb D\mathrm \xi [/math]дисперсия случайного события
Доказательство:
[math]\triangleright[/math]

Для [math]x\gt 0[/math] неравенство [math]|\xi-\mathbb E\mathrm \xi| \geqslant x[/math] равносильно неравенству [math](\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2[/math], поэтому

[math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \geqslant x) = \mathbb P\mathrm((\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2 ) \leqslant \dfrac {\mathbb E\mathrm(\xi-\mathbb E\mathrm\xi)^2}{x^2} = \dfrac {\mathbb D\mathrm \xi}{x^2}[/math]
[math]\triangleleft[/math]

Следствие

Как следствие получим так называемое "правило трех сигм", которое означает, что вероятность случайной величины отличаться от своего математического ожидания более чем на три корня из дисперсии мала.

Утверждение:
Если [math]\mathbb E\mathrm \xi^2 \lt \mathcal {1}[/math], то [math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \leqslant 3\sqrt{ \mathbb D\mathrm \xi})\geqslant \dfrac {8}{9}[/math].
[math]\triangleright[/math]

Согласно неравенству Чебышева

[math]\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|\geqslant 3\sqrt{\mathbb D\mathrm \xi})\leqslant \dfrac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \dfrac {1} {9}[/math]
Отсюда заметим, что вероятность отклониться значению случайной величины от значения математического ожидания меньше чем [math]\dfrac {1}{9}[/math]
[math]\triangleleft[/math]

См. также

Источники информации