Интегрирование/дифференцирование производящих функций — различия между версиями
Zem4ik (обсуждение | вклад) (small fix) |
Zem4ik (обсуждение | вклад) (Добавление 3-го примера) |
||
Строка 96: | Строка 96: | ||
:<tex>g_n = \dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})</tex> | :<tex>g_n = \dfrac{7}{9} 2^n + (-1)^n (\dfrac{1}{3} n + \dfrac{2}{9})</tex> | ||
+ | |||
+ | ===Пример 3=== | ||
+ | |||
+ | Вычислим обратную функцию к экспоненте. Для этого мы воспользуемся разложением экспоненты: | ||
+ | |||
+ | :<tex>e^z = \sum\limits_{z = 0}^{\infty} \dfrac{1}{n!} z^n</tex> | ||
+ | |||
+ | Разложение экспоненты начинается с 1, поэтому аргумент логарифма нужно сдвинуть в 1: | ||
+ | |||
+ | :<tex>ln(1 + t) = l_1 t + l_2 t^2 + l_3 t^3 + \dots</tex> | ||
+ | |||
+ | (свободный член в разложении равен <tex>0</tex>, поскольку <tex>ln(1) = 0</tex>). Для вычисления коэффициентов разложения логарифма воспользуемся тем, что производная функции и обратной к ней в произведении дают <tex>1</tex>. Поскольку <tex>\dfrac{d}{ds} e^s = e^s</tex>, получаем | ||
+ | |||
+ | :<tex>\dfrac{d}{dt} ln(1 + t) = \dfrac{1}{1 + t} = 1 - t + t^2 - t^3 + t^4 - \dots</tex>, | ||
+ | |||
+ | откуда, интегрируя, | ||
+ | |||
+ | :<tex>ln(1 + t) = t - \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 - \dfrac{1}{4}t^4 + \dots</tex> | ||
+ | |||
+ | Чаще используется следующий вариант: | ||
+ | |||
+ | :<tex>-ln(1 - t) = ln(1 - t)^{-1} = t + \dfrac{1}{2}t^2 + \dfrac{1}{3}t^3 + \dfrac{1}{4}t^4 + \dots</tex> | ||
==Решение обыкновенных дифференциальных уравнений на производящие функции== | ==Решение обыкновенных дифференциальных уравнений на производящие функции== |
Версия 20:05, 10 июня 2017
Содержание
Дифференцирование и интегрирование производящих функций
Определение: |
Пусть Производной этой функции называется функция Интегралом называется функция | - производящая функция.
Операция дифференцирования обратна операции интегрирования:
- .
Операция же интегрирования производной приводит к функции с нулевым свободным членом, и поэтому результат, вообще говоря, отличается от исходной функции.
Замечание
Утверждение: |
Для функций, представимых в виде степенных рядов, формула для производной соответствует обычной. Формула для интеграла соответствует значению интеграла с переменным верхним пределом
|
Примеры
Пример 1
Последнее замечание позволяет подсчитывать (т. е. выражать в терминах элементарных) производящие функции для большого числа разнообразных последовательностей. Вычислим, например, производящую функцию
Умножая функцию
на и дифференцируя, получаем- ,
откуда
- .
Пример 2
Используя только что полученные знания о дифференцировании и интегрировании производящих функций, попробуем решить следующее рекуррентное уравнение:
Умножим обе части всех равенств на z в соответствующей степени и просуммируем:
Левая часть
представляет собой производящую функцию в бесконечном виде.Попытаемся выразить правую часть через
. Рассмотрим каждое слагаемое:Составляем уравнение:
Это и есть производящая функция для заданного рекуррентного уравнения. Раскладывая её на простейшие дроби (например, методом неопределенных коэффициентов или методом подстановки различных значений
), получаем:Второе и третье слагаемые легко раскладываются в степенной ряд, а вот с первым придется чуть повозиться. Используя правило дифференцирования производящих функций имеем:
Собственно всё. Раскладываем каждое слагаемое в степенной ряд и получаем ответ:
Мы искали G(z) в виде
, значитПример 3
Вычислим обратную функцию к экспоненте. Для этого мы воспользуемся разложением экспоненты:
Разложение экспоненты начинается с 1, поэтому аргумент логарифма нужно сдвинуть в 1:
(свободный член в разложении равен
, поскольку ). Для вычисления коэффициентов разложения логарифма воспользуемся тем, что производная функции и обратной к ней в произведении дают . Поскольку , получаем- ,
откуда, интегрируя,
Чаще используется следующий вариант:
Решение обыкновенных дифференциальных уравнений на производящие функции
Теорема (О существовании и единственности решения): |
Рассмотрим обыкновенное дифференциальное уравнение
|
Доказательство: |
Доказательство проводится обычным способом последовательного нахождения коэффициентов функции . Пусть степень по равна иПриравнивая коэффициенты при в левой и правой частях уравнения , получаемАналогично, равенство коэффициентов при даетВообще, находится из уравнения
|
См. также
- Производящая функция
- Производящие функции нескольких переменных
- Арифметические действия с формальными степенными рядами
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4
- Производящие функции — туда и обратно (10.06.2017)