Интегрирование/дифференцирование производящих функций — различия между версиями
Zem4ik (обсуждение | вклад) (→Решение обыкновенных дифференциальных уравнений на производящие функции: fix) |
Zem4ik (обсуждение | вклад) (→Решение обыкновенных дифференциальных уравнений на производящие функции: добавление пояснения) |
||
Строка 135: | Строка 135: | ||
:<tex>F(s, t) = (F_{00} + F_{10} s + F_{20} s^2 + \dots) + (F_{01} + F_{11} s + F_{21} s^2 + \dots) t + \dots + (F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) t^n, f(s) = f_0 + f_1 s + f_2 s^2 + \dots</tex> | :<tex>F(s, t) = (F_{00} + F_{10} s + F_{20} s^2 + \dots) + (F_{01} + F_{11} s + F_{21} s^2 + \dots) t + \dots + (F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) t^n, f(s) = f_0 + f_1 s + f_2 s^2 + \dots</tex> | ||
− | Приравнивая коэффициенты при <tex>s^0</tex> в левой и правой частях уравнения <tex>(1)</tex> | + | Приравнивая коэффициенты при <tex>s^0</tex> в левой и правой частях уравнения <tex>(1)</tex> |
+ | |||
+ | Возьмем с первого слагаемого: | ||
+ | |||
+ | :<tex>(F_{00} + F_{10} s + F_{20} s^2 + \dots) \rightarrow F_{00}</tex> | ||
+ | |||
+ | Возьмем со второго слагаемого: | ||
+ | |||
+ | :<tex>(F_{01} + F_{11} s + F_{21} s^2 + \dots) t = (F_{01} + F_{11} s + F_{21} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots) \rightarrow F_{01} f_0</tex> | ||
+ | |||
+ | Возьмем со n-го слагаемого: | ||
+ | |||
+ | :<tex>(F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) t^n = (F_{0n} + F_{1n} s + F_{2n} s^2 + \dots) (f_0 + f_1 s + f_2 s^2 + \dots)^n \rightarrow F_{0n} f_0^n</tex> | ||
+ | |||
+ | Итого выходит: | ||
:<tex>f_1 = F_{00} + F_{01} f_0 + \dots + F_{0n} f_0^n</tex> | :<tex>f_1 = F_{00} + F_{01} f_0 + \dots + F_{0n} f_0^n</tex> |
Версия 23:12, 10 июня 2017
Содержание
Дифференцирование и интегрирование производящих функций
Определение: |
Пусть производящая функция.
Производной этой функции называется функция Интегралом называется функция | —
Операция дифференцирования обратна операции интегрирования:
- .
Операция же интегрирования производной приводит к функции с нулевым свободным членом, и поэтому результат, вообще говоря, отличается от исходной функции.
Замечание
Утверждение: |
Для функций, представимых в виде степенных рядов, формула для производной соответствует обычной. Формула для интеграла соответствует значению интеграла с переменным верхним пределом
|
Примеры
Пример 1
Последнее замечание позволяет подсчитывать (т. е. выражать в терминах элементарных) производящие функции для большого числа разнообразных последовательностей. Вычислим, например, производящую функцию
Умножая функцию
на и дифференцируя, получаем- ,
откуда
- .
Пример 2
Используя только что полученные знания о дифференцировании и интегрировании производящих функций, попробуем решить следующее рекуррентное уравнение:
Умножим обе части всех равенств на z в соответствующей степени и просуммируем:
Левая часть
представляет собой производящую функцию в бесконечном виде.Попытаемся выразить правую часть через
. Рассмотрим каждое слагаемое:Составляем уравнение:
Это и есть производящая функция для заданного рекуррентного уравнения. Раскладывая её на простейшие дроби (например, методом неопределенных коэффициентов или методом подстановки различных значений
), получаем:Второе и третье слагаемые легко раскладываются в степенной ряд, а вот с первым придется чуть повозиться. Используя правило дифференцирования производящих функций имеем:
Собственно всё. Раскладываем каждое слагаемое в степенной ряд и получаем ответ:
Мы искали G(z) в виде
, значитПример 3
Вычислим обратную функцию к экспоненте. Для этого мы воспользуемся разложением экспоненты:
Разложение экспоненты начинается с 1, поэтому аргумент логарифма нужно сдвинуть в 1:
(свободный член в разложении равен
, поскольку ). Для вычисления коэффициентов разложения логарифма воспользуемся тем, что производная функции и обратной к ней в произведении дают . Поскольку , получаем- ,
откуда, интегрируя,
Чаще используется следующий вариант:
Решение обыкновенных дифференциальных уравнений на производящие функции
Теорема (О существовании и единственности решения): |
Рассмотрим обыкновенное дифференциальное уравнение
|
Доказательство: |
Доказательство проводится обычным способом последовательного нахождения коэффициентов функции . Пусть степень по равна иПриравнивая коэффициенты при в левой и правой частях уравненияВозьмем с первого слагаемого: Возьмем со второго слагаемого: Возьмем со n-го слагаемого: Итого выходит: Аналогично, равенство коэффициентов при даетВообще, находится из уравнения
|
См. также
- Производящая функция
- Производящие функции нескольких переменных
- Арифметические действия с формальными степенными рядами
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4
- Производящие функции — туда и обратно (10.06.2017)
- Элементы перечислительной комбинаторики (10.06.2017)