Задача о счастливых билетах — различия между версиями
Rgolchin (обсуждение | вклад) |
Rgolchin (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
}} | }} | ||
__TOC__ | __TOC__ | ||
− | == | + | == Метод динамического программирования == |
Обозначим количество <tex>n</tex>-значных чисел с суммой <tex>k</tex> как <tex>D_n^k</tex> (число может содержать ведущие нули). <tex>2n</tex>-значный счастливый билет состоит из двух частей: левой (<tex>n</tex> цифр) и правой (тоже <tex>n</tex> цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем <tex>2n</tex>-значное число с суммой <tex>k</tex> в левой части (это можно сделать <tex>D_n^k</tex> способами), для него будет существовать <tex>D_n^k</tex> возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой <tex>k</tex> в одной из частей равно <tex>(D_n^k)^2</tex>. Значит общее число билетов равно <tex>L_n = \sum\limits_{k=0}^{9n} (D_{n}^{k})^2</tex>. Верхний индекс суммирования равен <tex>9n</tex>, так как максимальная сумма цифр в одной части билета равна <tex>9n</tex>. Также можно сопоставить счастливому билету <tex>a_1a_2\ldots a_n b_1b_2 \ldots b_n</tex> <tex>2n</tex>-значное число с суммой <tex>9n</tex>: <tex>a_1a_2\ldots a_n (9-b_1)(9-b_2) \ldots (9-b_n)</tex>, причем это соответствие взаимно-однозначно, поэтому <tex>L_n=D_{2n}^{9n}</tex>. | Обозначим количество <tex>n</tex>-значных чисел с суммой <tex>k</tex> как <tex>D_n^k</tex> (число может содержать ведущие нули). <tex>2n</tex>-значный счастливый билет состоит из двух частей: левой (<tex>n</tex> цифр) и правой (тоже <tex>n</tex> цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем <tex>2n</tex>-значное число с суммой <tex>k</tex> в левой части (это можно сделать <tex>D_n^k</tex> способами), для него будет существовать <tex>D_n^k</tex> возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой <tex>k</tex> в одной из частей равно <tex>(D_n^k)^2</tex>. Значит общее число билетов равно <tex>L_n = \sum\limits_{k=0}^{9n} (D_{n}^{k})^2</tex>. Верхний индекс суммирования равен <tex>9n</tex>, так как максимальная сумма цифр в одной части билета равна <tex>9n</tex>. Также можно сопоставить счастливому билету <tex>a_1a_2\ldots a_n b_1b_2 \ldots b_n</tex> <tex>2n</tex>-значное число с суммой <tex>9n</tex>: <tex>a_1a_2\ldots a_n (9-b_1)(9-b_2) \ldots (9-b_n)</tex>, причем это соответствие взаимно-однозначно, поэтому <tex>L_n=D_{2n}^{9n}</tex>. | ||
Осталось научиться вычислять <tex>D_n^k</tex>. Положим <tex>D_0^k=\begin{cases}1,&k=0\\0,&k>0\end{cases}</tex>. При <tex>n>0</tex> количество <tex>n</tex>-значных чисел с суммой цифр <tex>k</tex> можно выразить через количество <tex>(n-1)</tex>-значных чисел, добавляя к ним <tex>n</tex>-ю цифру, которая может быть равна <tex>0, 1, \ldots, 9</tex>: <tex>D_n^k=\sum\limits_{j=0}^{9}D_{n-1}^{k-j}</tex>. | Осталось научиться вычислять <tex>D_n^k</tex>. Положим <tex>D_0^k=\begin{cases}1,&k=0\\0,&k>0\end{cases}</tex>. При <tex>n>0</tex> количество <tex>n</tex>-значных чисел с суммой цифр <tex>k</tex> можно выразить через количество <tex>(n-1)</tex>-значных чисел, добавляя к ним <tex>n</tex>-ю цифру, которая может быть равна <tex>0, 1, \ldots, 9</tex>: <tex>D_n^k=\sum\limits_{j=0}^{9}D_{n-1}^{k-j}</tex>. | ||
− | == | + | == Метод производящей функции == |
Выпишем производящую функцию <tex>G(z)</tex>, коэффициент при <tex>z^k</tex> у которой будет равен <tex>D_1^k</tex>: | Выпишем производящую функцию <tex>G(z)</tex>, коэффициент при <tex>z^k</tex> у которой будет равен <tex>D_1^k</tex>: | ||
<tex> | <tex> | ||
Строка 37: | Строка 37: | ||
: <tex>p_0 \approx \dfrac{10^6}{3\sqrt{11\pi}} \approx 56700</tex> | : <tex>p_0 \approx \dfrac{10^6}{3\sqrt{11\pi}} \approx 56700</tex> | ||
Полученный результат с хорошей точностью (отклонение составляет не более <tex>3\%</tex>) приближает искомое значение. | Полученный результат с хорошей точностью (отклонение составляет не более <tex>3\%</tex>) приближает искомое значение. | ||
+ | == Способ с конечной суммой == | ||
+ | Рассмотрим функцию <tex>g(\phi)=\left(\dfrac{\sin{5\phi}}{\sin{\frac{\pi}{2}}}\right)^6</tex>. Как доказано в предыдущем разделе, <tex>L_n=\dfrac{1}{2\pi}\displaystyle\int_0^{2\pi}g(\phi)d\phi</tex>. Для интеграла можно выписать приближенную формулу <tex>L_n \approx \dfrac{1}{N}\sum\limits_{k=0}^{N-1}g(\dfrac{2\pi k}{N})</tex>. Интересно, что при достаточно большом <tex>N</tex> это равенство становится точным. | ||
+ | {{Утверждение | ||
+ | |statement=При <tex>N \geqslant 28</tex> и любом <tex>\phi_0</tex> <tex>L_n = \dfrac{1}{N}\sum\limits_0^{N-1}g(\phi_0+\dfrac{2\pi k}{N})</tex> | ||
+ | |proof=<tex>g(\phi)=H(e^{i\phi})=\sum\limits_{j=-27}^{27}a_je^{ij\phi}</tex>, где <tex>a_j</tex> {{---}} коэффициенты многочлена <tex>H</tex>. <tex>g(\phi)=a_0+\sum\limits_{j=1}^{27}a_j(e^{ij\phi}+e^{-ij\phi})</tex>. Тогда искомая сумма равна <tex>\dfrac{1}{N}\sum\limits_{k=0}^{N-1}\sum\limits_{j=1}^{27}a_j(e^{ij(\phi_0+\frac{2\pi k}{N}} + e^{-ij(\phi_0+\frac{2\pi k}{N} )})= \dfrac{1}{N}e^{ij\phi_0}\sum\limits_{j=1}^{27}a_j\sum\limits_{k=0}^{N-1}(e^{ij\frac{2\pi k}{N}} + e^{-ij\frac{2\pi k}{N} })</tex>. Рассмотрим внутреннюю сумму: | ||
+ | <tex>\sum\limits_{k=0}^{N-1}(e^{\frac{2ijk\pi}{N}}+e^{-\frac{2ijk\pi}{N}})=\dfrac{1-e^{2ij\pi}}{1-e^{\frac{2ij\pi}{N}}}+\dfrac{1-e^{-2ij\pi}}{1-e^{-\frac{2ij\pi}{N}}}</tex> (можем воспользоваться формулой для суммы геометрической прогрессии, т.к. ее знаменатель не равен <tex>1</tex>: <tex>N>j \implies e^{\frac{2ij\pi}{N}}\neq 1, e^{-\frac{2ij\pi}{N}}\neq 1</tex>) | ||
+ | }} | ||
+ | |||
== См. также == | == См. также == | ||
* [[Производящая функция]] | * [[Производящая функция]] |
Версия 03:35, 11 июня 2017
Троллейбусный (трамвайный) билет имеет номер, состоящий из шести цифр. Билет считается счастливым, если сумма первых трёх цифр равна сумме последних трёх, например,
. Известно, что количество счастливых билетов из шести цифр равно .Задача: |
Для натурального | найти количество -значных счастливых билетов .
Содержание
Метод динамического программирования
Обозначим количество
-значных чисел с суммой как (число может содержать ведущие нули). -значный счастливый билет состоит из двух частей: левой ( цифр) и правой (тоже цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем -значное число с суммой в левой части (это можно сделать способами), для него будет существовать возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой в одной из частей равно . Значит общее число билетов равно . Верхний индекс суммирования равен , так как максимальная сумма цифр в одной части билета равна . Также можно сопоставить счастливому билету -значное число с суммой : , причем это соответствие взаимно-однозначно, поэтому . Осталось научиться вычислять . Положим . При количество -значных чисел с суммой цифр можно выразить через количество -значных чисел, добавляя к ним -ю цифру, которая может быть равна : .Метод производящей функции
Выпишем производящую функцию
, коэффициент при у которой будет равен : Действительно, однозначное число с суммой цифр (для ) можно представить одним способом. Для — ноль способов. Заметим, что — производящая функция для чисел , поскольку коэффициент при получается перебором всех возможных комбинаций из цифр, равных в сумме . Ответом на задачу будет . Перепишем производящую функцию в ином виде: и получим, что . Так как , , что при дает .Решение с помощью формулы включения-исключения [1]
Как было замечено выше, ответ на задачу равен количеству шестизначных билетов с суммой [2] из по , в котором -й элемент повторяется раз. Так как это сопоставление взаимно-однозначно, количество расстановок равно количеству сочетаний с повторениями, т.е. . Число всех расстановок неотрицательных целых чисел с суммой в шесть позиций равно Число расстановок одинаково для всех и равно . В самом деле, мы можем поставить в -ю позицию число , а оставшуюся сумму произвольно распределить по шести позициям. Аналогично, число расстановок одинаково для любой пары и равно : мы выбираем две позиции и ставим в них и произвольно распределяем оставшуюся сумму по шести позициям. Таким образом, искомое количество расстановок равно
. Рассмотрим расстановки целых неотрицательных чисел на шести позициях, дающих в сумме ; обозначим их множество . Выделим шесть множеств , где -е множество состоит из расстановок, у которых в -й позиции стоит число, не меньшее . Число счастливых билетов равно числу расстановок, не принадлежащих ни одному из множеств. Расстановке из чисел с суммой сопоставим сочетание с повторениямиРешение путем интегрирования
Рассмотрим многочлен Лорана (т.е. многочлен, в котором допускаются отрицательные степени) [3] из комплексного анализа:
. Заметим, что его свободный член равен . Воспользуемся теоремой КошиТеорема (Коши): |
Для любого многочлена Лорана его свободный член равен
|
Упростим многочлен
:- и применим замену :
Рассмотрим функцию [4] Этот метод позволяет оценить значение интеграла
на . Вне отрезка , значит интеграл по этой части не больше , основная часть сосредоточена на . Оценим интеграл по этому промежутку с помощью метода стационарной фазы.- . При значение интеграла определяется поведением его фазы, т.е. , в окрестности стационарной точки (точки, где , или, что то же самое, ). Вблизи 0 , а . При больших получим
- [5]. Заметим, что при , поэтому интеграл примерно равен . , где — функция ошибок
Полагая
и вспоминая выражение для , получаем приближенное равенство:Полученный результат с хорошей точностью (отклонение составляет не более
) приближает искомое значение.Способ с конечной суммой
Рассмотрим функцию
. Как доказано в предыдущем разделе, . Для интеграла можно выписать приближенную формулу . Интересно, что при достаточно большом это равенство становится точным.Утверждение: |
При и любом |
, где — коэффициенты многочлена . . Тогда искомая сумма равна . Рассмотрим внутреннюю сумму: (можем воспользоваться формулой для суммы геометрической прогрессии, т.к. ее знаменатель не равен : ) |
См. также
Примечания
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4