Разрез, лемма о потоке через разрез — различия между версиями
Tsar (обсуждение | вклад) м |
Tsar (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <b><tex>(s,t)</tex>-разрезом</b> <tex> | + | <b><tex>(s,t)</tex>-разрезом</b> <tex>\langle S,T\rangle</tex> в сети <tex>G</tex> называется пара множеств <tex>S,T</tex>, удоволетворяющих условиям: |
1) <tex>s\in S, t\in T</tex> | 1) <tex>s\in S, t\in T</tex> | ||
Строка 16: | Строка 16: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пропускная способность разреза <tex> | + | Пропускная способность разреза <tex>\langle S,T\rangle</tex> обозначается <tex>c(S,T)</tex> и вычисляется по формуле: <tex>c(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}c(u,v)</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Поток в разрезе <tex> | + | Поток в разрезе <tex>\langle S,T\rangle</tex> обозначается <tex>f(S,T)</tex> и вычисляется по формуле: <tex>f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)</tex>. |
}} | }} | ||
{{Лемма | {{Лемма | ||
|statement = | |statement = | ||
− | Пусть <tex> | + | Пусть <tex>\langle S,T\rangle</tex> - разрез в <tex>G</tex>. Тогда <tex>f(S,T)=|f|</tex>. |
|proof = | |proof = | ||
<tex>f(S,T)=f(S,V)-f(S,S)=f(S,V)=f(S\setminus s,V)+f(s,V)=f(s,V)=|f|</tex> | <tex>f(S,T)=f(S,V)-f(S,S)=f(S,V)=f(S\setminus s,V)+f(s,V)=f(s,V)=|f|</tex> | ||
Строка 44: | Строка 44: | ||
закон слабой двойственности потока и разреза | закон слабой двойственности потока и разреза | ||
|statement = | |statement = | ||
− | Пусть <tex> | + | Пусть <tex>\langle S,T\rangle</tex> - разрез в <tex>G</tex>. Тогда <tex>f(S,T)\le c(S,T)</tex>. |
|proof = | |proof = | ||
<tex>{c(S,T)-f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}c(u,v)-\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)= | <tex>{c(S,T)-f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}c(u,v)-\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)= | ||
Строка 53: | Строка 53: | ||
{{Лемма | {{Лемма | ||
|statement = | |statement = | ||
− | Если <tex>f(S,T)=c(S,T)</tex>, то поток <tex>f</tex> - максимален, а разрез <tex> | + | Если <tex>f(S,T)=c(S,T)</tex>, то поток <tex>f</tex> - максимален, а разрез <tex>\langle S,T\rangle</tex> - минимален. |
|proof = | |proof = | ||
− | Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\le c(S_2,T_2)</tex> для любых двух разрезов <tex> | + | Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\le c(S_2,T_2)</tex> для любых двух разрезов <tex>\langle S_1,T_1\rangle</tex> и <tex>\langle S_2,T_2\rangle</tex> в сети <tex>G</tex> (так как <tex>f(S_1,T_1)=|f|=f(S_2,T_2)\le c(S_2,T_2)</tex>). |
Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | ||
[[Файл:flows_and_cuts.png|thumb|right|Потоки и разрезы]] Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>. | [[Файл:flows_and_cuts.png|thumb|right|Потоки и разрезы]] Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>. | ||
}} | }} |
Версия 16:32, 22 декабря 2010
Определение разреза
Определение: |
1) 2) 3) | -разрезом в сети называется пара множеств , удоволетворяющих условиям:
Поток через разрез
Определение: |
Пропускная способность разреза | обозначается и вычисляется по формуле: .
Определение: |
Поток в разрезе | обозначается и вычисляется по формуле: .
Лемма: |
Пусть - разрез в . Тогда . |
Доказательство: |
1-е равенство выполняется, так как суммы не пересекаются ( );2-е равенство выполняется из-за антисимметричности ( );3-е равенство выполняется, как и 1-е, из-за непересекающихся сумм; 4-е равенство выполняется из-за сохранения потока. |
Лемма (закон слабой двойственности потока и разреза): |
Пусть - разрез в . Тогда . |
Доказательство: |
, из-за органичений пропускных способностей ( ). |
Лемма: |
Если , то поток - максимален, а разрез - минимален. |
Доказательство: |
Из закона слабой двойственности следует, что для любых двух разрезов и в сети (так как ). Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети . |