Centroid decomposition — различия между версиями
(→Статическая центроидная декомпозиция) |
(→Лемма о существовании центроида и алгоритм его нахождения.) |
||
Строка 48: | Строка 48: | ||
В любом дереве t существует центроид. | В любом дереве t существует центроид. | ||
|proof= | |proof= | ||
− | Рассмотрим корень дерева <math>(r)</math>. Положим изначально <math>v = r</math>. Изначально <math>|subtree(v)| = n</math>. Среди всех детей <math>v</math> выберем вершину | + | Рассмотрим корень дерева <math>(r)</math>. Положим изначально <math>v = r</math>. Изначально <math>|subtree(v)| = n</math>. Среди всех детей <math>v</math> выберем вершину |
− | |||
− | |||
}} | }} | ||
Версия 01:42, 14 июня 2017
Centroid decomposition (рус. центроидная декомпозиция) - это структура данных, позволяющая отвечать на запросы на дереве. Чаще всего это запросы, связанные с нахождением функции на вершинах, связанных неравенством на расстояние между ними в дереве. Также иногда применяется для запросов на путях в дереве.
Содержание
Введение
Рассмотрим 2 задачи на обычном массиве (в дальнейшем мы будем их обобщать на случай дерева): Задача 1
Задача: |
Есть массив | положительных целых чисел из элементов и числа и . Требуется найти количество пар индексов массива, таких что и .
Задача 2:
Задача: |
Есть прямая дорога, на которой расположены 1) дан город 3) дан город , в котором находится больной и требуется найти такой город , что минимально возможное. 2) дан город и сказано, что больше он не будет принимать больных и сказано, что теперь он может принимать больных | городов. В некоторых городах есть госпитали, которые могут принимать больных. Поступают запросы вида :
Для начала решим обе задачи. Первая задача решается методом qevide&conqure (рус. разделяй и властвуй) - давайте разделим массив на 2 массива и и рекурсивно решим задачу для каждого из них. Осталось научиться находить количество искомых пар , таких что . Для этого воспользуемся другой известной техникой - методом двух указателей. Посчитаем массив префиксных сумм для правой половины и суффиксных ( ) - для левой. Заведем два указателя ( и ). Изначально установим . Пока и
будем уменьшать на . Если после этого , то к ответу прибавим , посго, увеличим на <math/math>. Так будем делать, пока . В конце сложим текущий ответ и ответы для половин массива - получим ответ на задачу.
Вторая задача имеет запросы на изменение и поэтому надо применить динамическую версию qevide&conqure - дерево отрезков. Построим дерево отрезков, поддерживающее 2 вида запросов : присвоение в точке и минимум на отрезке. Изначально сделаем так, чтобы дереву отрезков соответствовал массив , такой что , если в i-м городе принимает госпиталь и иначе. Когда в каком-то городе открывается/закрывается госпиталь - делаем запрос на изменение в дереве отрезков. Когда требуется узнать ближайщий госпиталь к -му городу, можно воспользоваться одной из следующих идей : а) ( ) Бинарным поиском ищем ближайший слева и ближайший справа к i-му городу госпиталь (такой город , что ). Для этого внутри бинарного поиска каждый раз делаем запрос на поиск минимума в дереве отрезков. б) ( ) Будем одним спуском/подъемом по дереву определять, куда нам нужно идти (в левое или правое поддерево), тем самым делая одновоременно и бинарный поиск, и спуск/подъем по дереву.
Статическая центроидная декомпозиция
Перейдем к обобщению поставленных задач на случай дерево. Начнем, как и полагается, с первой:
Задача: |
Есть взвешенное дерево | из вершин, в каждой вершине которого написаны положительные целые числа. Также по-прежнему даны числа и . Требуется найти количество пар вершин дерева, таких что расстояние между ними не превосходит по числу ребер и не превосходит по сумме весов.
Для решения новой задачи применим ту же идею, что и была до этого - разделяй и властвуй. Для этого нам потребуется следующий объект :
Определение: |
Центроидом дерева (англ. centroid) называется такая вершина | дерева , после удаления которой дерево разбивается на несколько ( ) поддеревьев , таких что для каждого : , т.е. размер каждого поддерева не превосходит половины размера исходного дерева.
Итак, в случае дерева идея разделяй-и-властвуй из предыдущего пункта будет формулироваться так : найдем центроид (доказательство её существования и алгоритм нахождение см. далее). Предположим, что мы сумели найти центроид за 2d-дерева отрезков, либо за с помощью техники поиска точек в d-мерном пространстве. Также читателю предлагается придумать и более эффективные и простые способы решить эту подзадачу.
, где - размер дерева. Тогда, как и в упрощенной версии задачи - рекурсивно найдем ответ для всех поддеревьев , после чего попытаемся найти недостающие пары вершин, находящиехя в разных поддеревьях и удовлетворяющих вопросу задачи. Для этого будем отвечать на следующие запросы : пусть мы сейчас считаем все пары, где первая из вершин находится в поддереве и мы в некоторой структуре данных храним все вершины остальных деревьев (каждую вершину задаем парой - глубина вершины и длина пути до нее из корня поддерева), расстояние до которых от корня их поддерева не превышает . Тогда просто пройдемся по всем вершинам поддерева и прибавим к ответу число вершин в структуре , таких, что и . Это двумерные запросы, на которые можно отвечать за с помощьюОценим итоговую асимптотику :
. Решая это рекурентное соотношение, получим .Теперь, как и было обещено, докажем лемму о существовании центроида и опишем алгоритм его эффективного поиска.
Лемма о существовании центроида и алгоритм его нахождения.
{Теорема |statement= В любом дереве t существует центроид. |proof= Рассмотрим корень дерева
. Положим изначально . Изначально . Среди всех детей выберем вершину }}