Пересечение всех максимальных по включению барьеров — различия между версиями
Scuuter (обсуждение | вклад) м |
Scuuter (обсуждение | вклад) м |
||
Строка 17: | Строка 17: | ||
|proof = Пусть <tex>H</tex> {{---}} пересечение всех максимальных по включению барьеров графа <tex>G</tex>. Чтобы доказать теорему, докажем, что <tex>A(G)\subset H</tex> и <tex>A(G)\supset H</tex>.<br> | |proof = Пусть <tex>H</tex> {{---}} пересечение всех максимальных по включению барьеров графа <tex>G</tex>. Чтобы доказать теорему, докажем, что <tex>A(G)\subset H</tex> и <tex>A(G)\supset H</tex>.<br> | ||
<br> | <br> | ||
− | <tex>A(G)\subset H</tex><br> | + | <tex>A(G)\subset H</tex>:<br> |
Пусть <tex>B</tex> {{---}} максимальный по включению барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G) \Rightarrow |B'| = |B| + k</tex>.<br> | Пусть <tex>B</tex> {{---}} максимальный по включению барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G) \Rightarrow |B'| = |B| + k</tex>.<br> | ||
Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br> | Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br> | ||
Строка 28: | Строка 28: | ||
Просуммировав прибавления по всем компонентам связности графа <tex>G - B</tex>, содержащим вершины из <tex>A(G)</tex>, мы получим, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, что и требовалось доказать.<br> | Просуммировав прибавления по всем компонентам связности графа <tex>G - B</tex>, содержащим вершины из <tex>A(G)</tex>, мы получим, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, что и требовалось доказать.<br> | ||
<br> | <br> | ||
− | <tex>A(G)\supset H</tex><br> | + | <tex>A(G)\supset H</tex>:<br> |
Предположим противное: пусть существует вершина <tex>x\notin A(G)</tex>, принадлежащая всем максимальным барьерам. По [[ Декомпозиция Эдмондса-Галлаи#barier_struct3| теореме о структуре барьера]] <tex>x\in C(G)</tex>.<br> | Предположим противное: пусть существует вершина <tex>x\notin A(G)</tex>, принадлежащая всем максимальным барьерам. По [[ Декомпозиция Эдмондса-Галлаи#barier_struct3| теореме о структуре барьера]] <tex>x\in C(G)</tex>.<br> | ||
Рассмотрим максимальное паросочетание <tex>M</tex> графа <tex>G</tex>, пусть <tex>xy\in M</tex>.<br> | Рассмотрим максимальное паросочетание <tex>M</tex> графа <tex>G</tex>, пусть <tex>xy\in M</tex>.<br> |
Версия 20:58, 24 декабря 2017
Теорема: |
Пересечение всех максимальных по включению барьеров графа равно . |
Доказательство: |
Пусть Пусть |
См. также
- Декомпозиция Эдмондса-Галлаи
- Лапы и минимальные по включению барьеры в графе
- Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях
- Теорема Татта о существовании полного паросочетания
Источники информации
- Карпов Д. В. — Теория графов, стр 54-55