Бинарное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Виды отношений)
(Свойства отношений)
Строка 22: Строка 22:
 
* [[Антисимметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\mathcal {8} x,y \in A \  (xRy \land yRx \Rightarrow x = y)</tex>;
 
* [[Антисимметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\mathcal {8} x,y \in A \  (xRy \land yRx \Rightarrow x = y)</tex>;
 
* [[Транзитивное отношение|Транзитивность]] (англ. ''transitivity''): <tex>\mathcal {8} x,y,z \in A \  (xRy \land yRz \Rightarrow xRz)</tex>;
 
* [[Транзитивное отношение|Транзитивность]] (англ. ''transitivity''): <tex>\mathcal {8} x,y,z \in A \  (xRy \land yRz \Rightarrow xRz)</tex>;
* Связность: <tex>\mathcal {8} x,y \in A \  (xRy \lor yRx)</tex>;
+
* Связность (англ. ''connectivity''): <tex>\mathcal {8} x,y \in A \  (xRy \lor yRx)</tex>;
 
* [[Антисимметричное отношение|Ассимметричность]] (англ. ''assymetric relation''): <tex>\mathcal {8} x,y \in A \  (xRy \Rightarrow \neg (yRx))</tex>.
 
* [[Антисимметричное отношение|Ассимметричность]] (англ. ''assymetric relation''): <tex>\mathcal {8} x,y \in A \  (xRy \Rightarrow \neg (yRx))</tex>.
  

Версия 17:14, 27 декабря 2017

Определение:
Бинарным отношением (англ. binary relation) [math]R[/math] из множества [math]A[/math] в множество [math]B[/math] называется подмножество прямого произведения [math]A[/math] и [math]B[/math] и обозначается: [math]R \subset A \times B[/math].


Часто используют инфиксную форму записи: [math]aRb, \ \langle x, y \rangle\in R[/math].

Если отношение определено на множестве [math]A[/math], то возможно следующее определение:

Определение:
Бинарным (или двуместным) отношением [math]R[/math] на множестве [math]A[/math] называется множество упорядоченных пар элементов этого множества.

Примерами множеств с введёнными на них бинарными отношениями являются графы и частично упорядоченные множества.

Свойства отношений

Для [math]R \subset A^2[/math] определены свойства:

Виды отношений

Выделяются следующие виды отношений:

  • квазипорядка (англ. quasiorder) — рефлексивное транзитивное;
  • эквивалентности (англ. equivalence) — рефлексивное симметричное транзитивное;
  • частичного порядка (англ. partial order) — рефлексивное антисимметричное транзитивное;
  • строгого порядка (англ. strict order) — антирефлексивное антисимметричное транзитивное;
  • линейного порядка (англ. linear order) — полное антисимметричное транзитивное;
  • доминирования (англ. dominance) — антирефлексивное антисимметричное.

Примеры отношений

См. также

Источники информации