Теорема Турана об экстремальном графе — различия между версиями
м |
|||
Строка 12: | Строка 12: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Граф Турана''' <tex>T^{r-1}(n)</tex> {{---}} единственный полный <tex>(r - 1)</tex>-дольный полный граф на <tex>n > r-1</tex> вершинах, доли которого по мощности не отличаются более чем на 1. Если <tex>n \leqslant r - 1</tex>, то <tex>T^{r-1}(n) = K^n</tex>. Через <tex> t_{r-1}(n) </tex> обозначим количество ребер в <tex>T^{r-1}(n)</tex>. | + | '''Граф Турана''' <tex>T^{r-1}(n)</tex> {{---}} единственный полный <tex>(r - 1)</tex>-[[Двудольные графы|дольный]] полный граф на <tex>n > r-1</tex> вершинах, доли которого по мощности не отличаются более чем на 1. Если <tex>n \leqslant r - 1</tex>, то <tex>T^{r-1}(n) = K^n</tex>. Через <tex> t_{r-1}(n) </tex> обозначим количество ребер в <tex>T^{r-1}(n)</tex>. |
}} | }} | ||
Строка 61: | Строка 61: | ||
==См. также== | ==См. также== | ||
*[[Раскраска графа]] | *[[Раскраска графа]] | ||
+ | *[[Двудольные графы]] | ||
==Источники информации== | ==Источники информации== | ||
''Дистель, Рейнград.'' Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X. | ''Дистель, Рейнград.'' Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X. |
Версия 13:20, 28 декабря 2017
Теорема Турана
Теорема Ту́рана (англ. Turán's theorem) — классическая теорема экстремальной теории графов. Она послужила образцом для большого количества подобных теорем, которые изучают некоторые глобальные параметры, такие как хроматическое число, относительно присутствия тех или иных подструктур.
Впервые задачу сформулировал Пал Туран в 1941 году.
Определение: |
— максимальное количество ребер в графе на вершинах, которые не содержит как подграф. |
Определение: |
Граф Турана дольный полный граф на вершинах, доли которого по мощности не отличаются более чем на 1. Если , то . Через обозначим количество ребер в . | — единственный полный -
Лемма: |
Если — -дольный граф с максимальным количеством ребер, то . |
Доказательство: |
Докажем от противного. Пусть существует Это противоречит предположению, что граф -дольный граф с максимальным числом ребер, который не явлется графом Турана. Обозначим его . Очевидно, что является полным -дольным. Так как , то в существуют доли и , что . Но тогда мы можем перекинуть одну вершину из в и количество ребер увеличится. максимален по числу ребер. |
Теорема: |
Для всех целых чисел , , где , любой граф с вершинами и ребрами есть . |
Доказательство: |
Применим индукцию по .База: При имеем , что и утверждалось База доказана.Шаг индукции: Пусть теперь . Поскольку реберно-максимален и не содержит подграфа , то содержит подграф . Обозначим любой из них как . Тогда по индукционному предположению имеет не более ребер, а любая вершина имеет не более соседей в Следовательно мы можем оценить количество ребер в :
Равенство справа следует непосредственно из графа Турана .Поскольку экстремален для , то в имеет место равенство. Таким образом, любая вершина из имеет ровно соседа в — точно так же, как и вершины из самого .При Так как по Лемме пусть есть множество всех вершин , чьи соседей в отличны от . Так как каждая вершина имеет ровно соседа в , то все не зависимы. При этом они в объединении дают поскольку . Следовательно, граф является -дольным. — единственный -дольный граф с вершинами и максимальными числом ребер, наше утверждение, что , следует из предположения об экстремальности . |
См. также
Источники информации
Дистель, Рейнград. Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X.