Задача о динамической связности — различия между версиями
(→Реализация на C++) |
|||
Строка 1: | Строка 1: | ||
{{Задача | {{Задача | ||
− | |definition = | + | |definition = Есть [[Основные_определения:_граф,_ребро,_вершина,_степень,_петля,_путь,_цикл#Неориентированные_графы|неориентированный граф]] из <tex>n</tex> вершин, изначально не содержащий рёбер. Требуется обработать <tex>m</tex> запросов трёх типов: |
* добавить ребро между вершинами <tex>u</tex> и <tex>v</tex>, | * добавить ребро между вершинами <tex>u</tex> и <tex>v</tex>, | ||
* удалить ребро между вершинами <tex>u</tex> и <tex>v</tex>, | * удалить ребро между вершинами <tex>u</tex> и <tex>v</tex>, | ||
* проверить, лежат ли вершины <tex>u</tex> и <tex>v</tex> в одной компоненте связности. | * проверить, лежат ли вершины <tex>u</tex> и <tex>v</tex> в одной компоненте связности. | ||
− | |||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
== Алгоритм == | == Алгоритм == | ||
Строка 38: | Строка 32: | ||
Вместо описанного способа откатывания состояния СНМ можно использовать [[Персистентные структуры данных|персистентный]] СНМ, но этот вариант сложнее и имеет меньшую эффективность. <!-- Я не уверен, бывает ли персистентный СНМ, работающий за log. --> | Вместо описанного способа откатывания состояния СНМ можно использовать [[Персистентные структуры данных|персистентный]] СНМ, но этот вариант сложнее и имеет меньшую эффективность. <!-- Я не уверен, бывает ли персистентный СНМ, работающий за log. --> | ||
− | == | + | == Частные случаи == |
+ | |||
+ | # Деревья. Для таких графов задачу можно решать при помощи [[Деревья Эйлерова обхода|деревьев эйлерова обхода]]. Операции добавления и удаления рёбер и проверка на существование пути между вершинами работают за <tex>O(\log n)</tex>. | ||
+ | |||
+ | # Планарные графы. D. Eppstein доказал, что для планарных графов мы также можем выполнять запросы за <tex>O(\log n)</tex>.<ref>David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery Westbrook, | ||
+ | Moti Yung: Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph. | ||
+ | J. Algorithms 13(1): 33-54 (1992)</ref> | ||
== См. также == | == См. также == |
Версия 23:08, 31 декабря 2017
Задача: |
Есть неориентированный граф из вершин, изначально не содержащий рёбер. Требуется обработать запросов трёх типов:
|
Содержание
Алгоритм
Построение дерева отрезков
Рассмотрим массив запросов. Каждое ребро в графе существует на некотором отрезке запросов: начиная с запроса добавления и заканчивая запросом удаления (либо концом запросов, если ребро не было удалено). Для каждого ребра можно найти этот отрезок, пройдя по массиву запросов и запоминая, когда какое ребро было добавлено.
Пусть есть
рёбер, -е соединяет вершины и , было добавлено запросом и удалено запросом .Построим на массиве запросов дерево отрезков, в каждой его вершине будем хранить список пар. -е рёбро графа нужно добавить на отрезок . Это делается аналогично тому, как в дереве отрезков происходит добавление на отрезке (процесс описан в статье "Несогласованные поддеревья. Реализация массового обновления"), но без : нужно спуститься по дереву от корня и записать пару в вершины дерева отрезков.
Теперь чтобы узнать, какие рёбра существуют во время выполнения
-го запроса, достаточно посмотреть на путь от корня дерева отрезков до листа, который соответствует этому запросу — рёбра, записанные в вершинах этого пути, существуют во время выполнения запроса.Ответы на запросы
Обойдём дерево отрезков в глубину, начиная с корня. Будем поддерживать граф, состоящий из рёбер, которые содержатся на пути от текущей вершины дерева отрезков до корня. При входе в вершину добавим в граф рёбра, записанные в этой вершине. При выходе из вершины нужно откатить граф к состоянию, которое было при входе. Когда мы добираемся до листа, в граф уже добавлены все рёбра, которые существуют во время выполнения соответствующего запроса, и только они. Поэтому если этот лист соответствует запросу третьего типа, его следует выполнить и сохранить ответ.
Для поддержания такого графа и ответа на запросы будем использовать систему непересекающихся множеств. При добавлении рёбер в граф объединим соответствующие множества в СНМ. Откатывание состояния СНМ описано ниже.
СНМ с откатами
Для того, чтобы иметь возможность откатывать состояние СНМ, нужно при каждом изменении любого значения в СНМ записывать в специальный массив, что именно изменилось и какое было предыдущее значение. Это можно реализовать как массив пар (указатель, значение).
Чтобы откатить состояние СНМ, пройдём по этому массиву в обратном порядке и присвоим старые значения обратно. Для лучшего понимания ознакомьтесь с приведённой ниже реализацией.
Нужно заметить, что эвристику сжатия путей в этом случае применять не следует. Эта эвристика улучшает асимптотическое время работы, но это время работы не истинное, а амортизированное. Из-за наличия откатов к предыдущим состояниям эта эвристика не даст выигрыша. СНМ с ранговой эвристикой же работает за
на запрос истинно.Запоминание изменений и откаты не влияют на время работы, если оно истинное, а не амортизированное. Действительно: пусть в СНМ произошло
изменений. Каждое из них будет один раз занесено в массив и один раз отменено. Значит, запись в массив и откаты работают за . Но и сами изменения заняли времени, значит, откаты не увеличили асимптотическое время работы.Вместо описанного способа откатывания состояния СНМ можно использовать персистентный СНМ, но этот вариант сложнее и имеет меньшую эффективность.
Частные случаи
- Деревья. Для таких графов задачу можно решать при помощи деревьев эйлерова обхода. Операции добавления и удаления рёбер и проверка на существование пути между вершинами работают за .
- Планарные графы. D. Eppstein доказал, что для планарных графов мы также можем выполнять запросы за [1] .
См. также
- Система непересекающихся множеств
- Дерево отрезков
- Задача о динамической связности оффлайн
- ↑ David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery Westbrook, Moti Yung: Maintenance of a Minimum Spanning Forest in a Dynamic Plane Graph. J. Algorithms 13(1): 33-54 (1992)