Дискретная случайная величина — различия между версиями
Mervap (обсуждение | вклад) м (Fix ticket) |
Mervap (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
# Число попаданий в мишень при <tex>n</tex> выстрелах. Принимаемые значения <tex>0 \ldots n</tex> | # Число попаданий в мишень при <tex>n</tex> выстрелах. Принимаемые значения <tex>0 \ldots n</tex> | ||
# Количество выпавших орлов при <tex>n</tex> бросков монетки. Принимаемые значения <tex>0 \ldots n</tex> | # Количество выпавших орлов при <tex>n</tex> бросков монетки. Принимаемые значения <tex>0 \ldots n</tex> | ||
− | |||
# Число очков, выпавших при бросании игральной кости. Случайная величина принимает одно из значений {{---}} <tex>\{1,2,3,4,5,6\}</tex> | # Число очков, выпавших при бросании игральной кости. Случайная величина принимает одно из значений {{---}} <tex>\{1,2,3,4,5,6\}</tex> | ||
− | |||
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле. | Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле. | ||
Строка 34: | Строка 32: | ||
*<tex>\lim\limits_{x \to -\infty} F(x) = 0, \lim\limits_{x \to +\infty} F(x) = 1</tex>. | *<tex>\lim\limits_{x \to -\infty} F(x) = 0, \lim\limits_{x \to +\infty} F(x) = 1</tex>. | ||
+ | |||
+ | ===Примеры=== | ||
+ | #Найдем функцию распределения количества попаданий в мишень. Пусть у нас есть <tex>n</tex> выстрелов, вероятность попадания равна <tex>p</tex>. Необходимо найти <tex>F(k)</tex>. Для <tex>k \leqslant 0 ~ F(x) = 0</tex>, так как нельзя попасть в мишень отрицательное число раз. Для <tex>k > 0 ~ F(x) = \sum\limits_{i = 0}^{k - 1}\dbinom{n}{i}p^{i} (1-p)^{k - i}</tex> | ||
+ | #Аналогичное решение имеет функция распределения числа выпавших орлов при броске монеты, если шанс выпадения орла {{---}} <tex>p</tex>. | ||
+ | #Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел <tex>1 \ldots 6</tex> соответственно равны <tex>p_{1} \ldots p_{6}</tex>. Для <tex>k \leqslant 1 ~ F(x) = 0</tex>, так как не может выпасть цифра меньше <tex>1</tex>. Для <tex>k > 1 ~ F(x) = \sum\limits_{i = 1}^{k - 1}p_{i}</tex> | ||
==Функция плотности вероятности== | ==Функция плотности вероятности== |
Версия 01:11, 7 марта 2018
Определение: |
Случайная величина (англ. random variable) — отображение из множества элементарных исходов в множество вещественных чисел. |
Содержание
Дискретная случайная величина
Определение: |
Дискретной случайной величиной (англ. discrete random variable) называется случайная величина, множество значений которой не более чем счётно, причём принятие ею каждого из значений есть случайное событие с определённой вероятностью. |
Примеры
Проще говоря, дискретные случайные величины — это величины, количество значений которых можно пересчитать. Например:
- Число попаданий в мишень при выстрелах. Принимаемые значения
- Количество выпавших орлов при бросков монетки. Принимаемые значения
- Число очков, выпавших при бросании игральной кости. Случайная величина принимает одно из значений —
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.
Функция распределения
Определение: |
Функция распределения случайной величины (англ. cumulative distribution function (CDF)) — функция | , определённая на как , т.е. выражающая вероятность того, что примет значение, меньшее чем
Свойства функции распределения:
- при
- непрерывна слева
- .
Примеры
- Найдем функцию распределения количества попаданий в мишень. Пусть у нас есть выстрелов, вероятность попадания равна . Необходимо найти . Для , так как нельзя попасть в мишень отрицательное число раз. Для
- Аналогичное решение имеет функция распределения числа выпавших орлов при броске монеты, если шанс выпадения орла — .
- Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел соответственно равны . Для , так как не может выпасть цифра меньше . Для
Функция плотности вероятности
Определение: |
Функция плотности вероятности (англ. Probability density function) — функция | , определённая на как первая производная функции распределения.
Свойства функции плотности вероятности:
- Интеграл от плотности по всему пространству равен единице:
- .
- Плотность вероятности определена почти всюду.
- Иными словами, множество точек, для которых она не определена, имеет меру ноль.