Алгоритм "Вперед-Назад" — различия между версиями
(→Псевдокод) |
|||
Строка 1: | Строка 1: | ||
− | + | '''Алгоритм "Вперед-Назад"''' (англ. ''forward–backward algorithm'') {{---}} алгоритм, позволяющий найти в [[Скрытые Марковские модели|скрытой Марковской модели]] вероятность попадания в состояние <tex>s_i</tex> на <tex>t</tex>-ом шаге при последовательности наблюдений <tex>O</tex> и (скрытой) последовательности состояний <tex>X</tex>. | |
− | За <tex>T</tex> шагов в этой модели получилась последовательность наблюдений <tex>O_{1,T} = {o_1, | + | == Вычисление == |
+ | Пусть дана скрытая Марковская модель <tex>\lambda = \{S, \Omega, \Pi, A, B\}</tex>, где <tex>S = \{s_1,\ldots, s_n\}</tex> {{---}} состояния, <tex>\Omega = \{\omega_1,\ldots, \omega_m\}</tex> {{---}} возможные события, <tex>\Pi = \{\pi_1,\ldots, \pi_n\}</tex> {{---}} начальные вероятности, <tex>A = \{a_{ij}\}</tex> {{---}} матрица переходов, а <tex>B = \{b_{i\omega_k}\}</tex> {{---}} вероятность наблюдения события <tex>\omega_k</tex> после перехода в состояние <tex>s_i</tex>. | ||
+ | За <tex>T</tex> шагов в этой модели получилась последовательность наблюдений <tex>O_{1,T} = {o_1,\ldots, o_T}</tex>. | ||
− | |||
− | |||
Пусть в момент <tex>t</tex> мы оказались в состоянии <tex>i</tex>: <tex>X_t = i</tex>. Назовем <tex>\alpha_{i}(t)</tex> вероятность того, что при этом во время переходов образовалась последовательность наблюдений <tex>O_{1,t-1}</tex>, а <tex>\beta_{i}(t)</tex> {{---}} вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений <tex>O_{t,T}</tex>: | Пусть в момент <tex>t</tex> мы оказались в состоянии <tex>i</tex>: <tex>X_t = i</tex>. Назовем <tex>\alpha_{i}(t)</tex> вероятность того, что при этом во время переходов образовалась последовательность наблюдений <tex>O_{1,t-1}</tex>, а <tex>\beta_{i}(t)</tex> {{---}} вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений <tex>O_{t,T}</tex>: | ||
Версия 14:02, 8 марта 2018
Алгоритм "Вперед-Назад" (англ. forward–backward algorithm) — алгоритм, позволяющий найти в скрытой Марковской модели вероятность попадания в состояние на -ом шаге при последовательности наблюдений и (скрытой) последовательности состояний .
Содержание
Вычисление
Пусть дана скрытая Марковская модель
, где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние . За шагов в этой модели получилась последовательность наблюдений .Пусть в момент
мы оказались в состоянии : . Назовем вероятность того, что при этом во время переходов образовалась последовательность наблюдений , а — вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений :
Нам требуется найти
. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события не зависит от того, что в прошлом мы наблюдали последовательность , и, следовательно:
Проход вперед
Заметим, что в
нужно считать равной , как вероятность получить первое событие из начального распределения.Для следующих
можно вычислить рекуррентно:
Итак, вероятность попасть в состояние
на -ом шаге, учитывая, что после перехода произойдет событие будет равна вероятности быть в состоянии на -ом шаге, умноженной на вероятность перейти из состояния в , произведя событие для всех .Проход назад
Аналогично,
, так как произвольная цепочка наблюдений будет произведена, какими бы ни были состояния.Предыдущие
считаются рекуррентно:
Сглаживание вероятности
Итак, для произвольного состояния
в произвольный шаг теперь известна вероятность того, что на пути к нему была произведена последовательность и вероятность того, что после него будет произведена последовательность . Чтобы найти вероятность того, что будет произведена цепочка событий, найти , нужно просуммировать произведение обеих вероятностей для всех состояний при произвольном шаге t: .Теперь найдем вероятность того, что в момент
цепь будет в состоянии :
Пример
Пусть ваша жизнь не удалась и вам пришлось работать охранником в холле офисного здания. Каждое утро вы наблюдали за тем, как один и тот же мужчина либо приносил, либо не приносил зонтик в зависимости от погоды. Увлекаясь статистикой, вы выяснили, что за день погода может поменяться с вероятностью
; если на улице идет дождь, то мужчина приносит зонтик с вероятностью , а если солнечно — то с вероятностью (пример справа).Но вот вас переводят смотреть за камерами наблюдения: теперь вы не можете наблюдать за погодой, но каждый день видите того мужчину. За рабочую неделю вы заметили, что он не принес зонтик лишь в среду. С какой вероятностью во вторник шел дождь?
По вышесказанному,
.Итак, с вероятностью
во вторник шел дождь.Псевдокод
// fwd, bkw — матрицы размера |S|*T, которым во время работы присваиваются промежуточные результаты alpha и beta // probabilities — матрица размера |S|*T, в которую заносится ответ // S - массив состояний, П - массив начальных вероятностей, O - последовательность наблюдений fun alpha(s: int, t: int): int if (s, t) in fwd return fwd[s, t] f = 0 for j in S f += alpha(j, t - 1) * transitionProbability[j][s] f *= emitProbability[s][observations[t]] fwd[s, t] = f return fwd[s, t] fun beta(s: int, t: int): int if (s, t) in bkw return bkw[s, t] b = 0 for j in S b += beta(j, t + 1) * transitionProbability[s][j] * emitProbability[j][O[t + 1]] bkw[s, t] = b return bkw[s, t] fun forward_backward(): for s in S fwd[s, 1] = emitProbability[s][observations[1]] * П[s] bkw[s, observations.length - 1] = 1 chainProbability = 0 for j in S chainProbability += alpha(j, 1) * beta(j, 1) for s in S for t in [1, T] probabilities[s, t] = (alpha(s, t) * beta(s, t)) / chainProbability