Алгоритм "Вперед-Назад" — различия между версиями
(→Псевдокод) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Ponomarev (обсуждение | вклад) (→Псевдокод) |
||
Строка 69: | Строка 69: | ||
f = 0 | f = 0 | ||
'''for''' j '''in''' S | '''for''' j '''in''' S | ||
− | f += alpha(j, t - 1) * transitionProbability[j | + | f += alpha(j, t - 1) * transitionProbability[j, s] |
− | f *= emitProbability[s | + | f *= emitProbability[s, observations[t]] |
fwd[s, t] = f | fwd[s, t] = f | ||
'''return''' fwd[s, t] | '''return''' fwd[s, t] | ||
Строка 79: | Строка 79: | ||
b = 0 | b = 0 | ||
'''for''' j '''in''' S | '''for''' j '''in''' S | ||
− | b += beta(j, t + 1) * transitionProbability[s | + | b += beta(j, t + 1) * transitionProbability[s, j] * emitProbability[j, O[t + 1]] |
bkw[s, t] = b | bkw[s, t] = b | ||
'''return''' bkw[s, t] | '''return''' bkw[s, t] | ||
Строка 85: | Строка 85: | ||
'''fun''' forward_backward(): | '''fun''' forward_backward(): | ||
'''for''' s '''in''' S | '''for''' s '''in''' S | ||
− | fwd[s, 1] = emitProbability[s | + | fwd[s, 1] = emitProbability[s, observations[1]] * П[s] |
bkw[s, observations.length - 1] = 1 | bkw[s, observations.length - 1] = 1 | ||
chainProbability = 0 | chainProbability = 0 |
Версия 21:40, 11 марта 2018
Алгоритм "Вперед-Назад" (англ. forward–backward algorithm) — алгоритм, позволяющий найти в скрытой Марковской модели вероятность попадания в состояние на -ом шаге при последовательности наблюдений и (скрытой) последовательности состояний .
Содержание
Вычисление
Пусть дана скрытая Марковская модель
, где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние . За шагов в этой модели получилась последовательность наблюдений .Пусть в момент
мы оказались в состоянии : . Назовем вероятность того, что при этом во время переходов образовалась последовательность наблюдений , а — вероятность того, что после этого состояния мы будем наблюдать последовательность наблюдений :
Нам требуется найти
. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события не зависит от того, что в прошлом мы наблюдали последовательность , и, следовательно:
Проход вперед
Заметим, что в
нужно считать равной , как вероятность получить первое событие из начального распределения.Для следующих
можно вычислить рекуррентно:
Итак, вероятность попасть в состояние
на -ом шаге, учитывая, что после перехода произойдет событие будет равна вероятности быть в состоянии на -ом шаге, умноженной на вероятность перейти из состояния в , произведя событие для всех .Проход назад
Аналогично,
, так как произвольная цепочка наблюдений будет произведена, какими бы ни были состояния.Предыдущие
считаются рекуррентно:
Сглаживание вероятности
Итак, для произвольного состояния
в произвольный шаг теперь известна вероятность того, что на пути к нему была произведена последовательность и вероятность того, что после него будет произведена последовательность . Чтобы найти вероятность того, что будет произведена цепочка событий, найти , нужно просуммировать произведение обеих вероятностей для всех состояний при произвольном шаге t: .Теперь найдем вероятность того, что в момент
цепь будет в состоянии :
Пример
Пусть ваша жизнь не удалась и вам пришлось работать охранником в холле офисного здания. Каждое утро вы наблюдали за тем, как один и тот же мужчина либо приносил, либо не приносил зонтик в зависимости от погоды. Увлекаясь статистикой, вы выяснили, что за день погода может поменяться с вероятностью
; если на улице идет дождь, то мужчина приносит зонтик с вероятностью , а если солнечно — то с вероятностью (пример справа).Но вот вас переводят смотреть за камерами наблюдения: теперь вы не можете наблюдать за погодой, но каждый день видите того мужчину. За рабочую неделю вы заметили, что он не принес зонтик лишь в среду. С какой вероятностью во вторник шел дождь?
По вышесказанному,
.
Итак, с вероятностью
во вторник шел дождь.Псевдокод
// fwd, bkw — матрицы размера |S|*T, которым во время работы присваиваются промежуточные результаты alpha и beta // probabilities — матрица размера |S|*T, в которую заносится ответ // S - массив состояний, П - массив начальных вероятностей, O - последовательность наблюдений fun alpha(s: int, t: int): int if (s, t) in fwd return fwd[s, t] f = 0 for j in S f += alpha(j, t - 1) * transitionProbability[j, s] f *= emitProbability[s, observations[t]] fwd[s, t] = f return fwd[s, t] fun beta(s: int, t: int): int if (s, t) in bkw return bkw[s, t] b = 0 for j in S b += beta(j, t + 1) * transitionProbability[s, j] * emitProbability[j, O[t + 1]] bkw[s, t] = b return bkw[s, t] fun forward_backward(): for s in S fwd[s, 1] = emitProbability[s, observations[1]] * П[s] bkw[s, observations.length - 1] = 1 chainProbability = 0 for j in S chainProbability += alpha(j, 1) * beta(j, 1) for s in S for t in [1, T] probabilities[s, t] = (alpha(s, t) * beta(s, t)) / chainProbability