Решение рекуррентных соотношений — различия между версиями
(→Определения) |
|||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Рекуррентная формула''' — формула вида <tex>a_n=f(n, a_{n-1}, a_{n-2}, \dots, a_{n-p} ) </tex>, выражающая каждый член последовательности <tex>a_n</tex> через <tex>p</tex> предыдущих членов и возможно номер члена последовательности <tex>n</tex>. | + | '''Рекуррентная формула''' (англ. ''Recurrence relation'') — формула вида <tex>a_n=f(n, a_{n-1}, a_{n-2}, \dots, a_{n-p} ) </tex>, выражающая каждый член последовательности <tex>a_n</tex> через <tex>p</tex> предыдущих членов и возможно номер члена последовательности <tex>n</tex>. |
}} | }} | ||
− | Во многих задачах полезно знать, есть ли у рекурсивной функции нерекурсивная или как еще говорят | + | Во многих задачах полезно знать, есть ли у рекурсивной функции нерекурсивная или как еще говорят замкнутая (англ. ''Closed-form'') форма, т.е. получение <tex>f(n)</tex> в виде аналитически заданной функции. Например, рекурсивная функция, описывающая сумму чисел натурального ряда: |
<tex> f = \begin{cases} f(0)=0; \\ f(n) = n + f(n-1),\quad n > 0 \end{cases}</tex> | <tex> f = \begin{cases} f(0)=0; \\ f(n) = n + f(n-1),\quad n > 0 \end{cases}</tex> | ||
− | может быть переведена в замкнутую форму: <tex>f = \dfrac{n(n+1)}{2}</tex>. Для этого можно использовать метод производящих функций. | + | может быть переведена в замкнутую форму: <tex>f = \dfrac{n(n+1)}{2}</tex>. Для этого можно использовать метод производящих функций (англ. ''Generating Function Method''). |
==Общая схема== | ==Общая схема== |
Версия 00:57, 17 марта 2018
Содержание
Определения
Определение: |
Рекуррентная формула (англ. Recurrence relation) — формула вида | , выражающая каждый член последовательности через предыдущих членов и возможно номер члена последовательности .
Во многих задачах полезно знать, есть ли у рекурсивной функции нерекурсивная или как еще говорят замкнутая (англ. Closed-form) форма, т.е. получение в виде аналитически заданной функции. Например, рекурсивная функция, описывающая сумму чисел натурального ряда:
может быть переведена в замкнутую форму:
. Для этого можно использовать метод производящих функций (англ. Generating Function Method).Общая схема
Пусть последовательность
удовлетворяет некоторому рекуррентному соотношению. Мы хотим получить выражение для (при ) в замкнутом виде (если это возможно). Производящие функции позволяют делать эту работу почти механически по одному и тому же алгоритму. Рассмотрим общую схему на простом примере, который позволит продемонстрировать базовые приёмы работы.Задано линейное однородное рекуррентное соотношение порядка
Порядок соотношения — это его «глубина», то есть количество предшествующих элементов, требуемых для вычисления элемента с номером
. В данном случае порядок равен , так как для вычисления требуется знать и .Будем искать производящую функцию последовательности в виде
с этой целью умножим верхнюю строчку в записи рекуррентного соотношения на
Теперь сложим все уравнения для всех значений
Левая часть уравнения в точности равна
Равенство
получатся вынесением z в первой степени за знак суммы, это необходимо, чтобы уровнять степень переменной и индекс переменной a внутри суммы. Действие — изменение индекса суммирования, которое позволяет избавиться от . Равенство получается, если прибавить и снова отнять значение , чтобы получить полную сумму от до . Равенство справедливо в силу того, что .Аналогичные манипуляции со второй суммой дают нам выражение
Теперь наше исходное уравнение для производящей функции принимает вид:
откуда получаем производящую функцию последовательности в замкнутом виде —
Отыскав производящую функцию в замкнутом виде, её нужно снова разложить в ряд. Это можно сделать разными способами, но самый простой из них — разбить всю дробь на простые дроби и применить формулу для разложения
Теперь разобьём дробь на сумму простых дробей:
Вспомним разложение для простейшей рациональной функции:
Из этого разложения следует, что
Таким образом,
С другой стороны, мы искали
поэтому, в силу равенства рядов, (для ).
Метод производящих функций
Алгоритм получения замкнутого выражения для чисел
, удовлетворяющих рекуррентному соотношению, с помощью производящих функций cостоит из шагов.- Записать рекуррентное соотношение и начальные данные для него в следующем виде (если порядок соотношения равен
):
- Домножить каждую строчку на в соответствующей степени и просуммировать строчки для всех .
- В полученном уравнении привести все суммы к замкнутому виду. Получить уравнение для производящей функции.
- Выразить в явном виде (решить уравнение, полученное на предыдущем шаге) и разложить производящую функцию в ряд по степеням .
Примеры
Числа Фибоначчи
Рассмотрим рекуррентное соотношение для чисел Фибоначчи:
Первый шаг алгоритма мы уже выполнили, записав рекуррентное соотношение. Выполним второй шаг:
Складываем все строчки:
Третий шаг алгоритма требует привести все суммы к замкнутому виду:
откуда получаем замкнутое выражение для производящей функции:
Осталось разложить её в ряд (чего требует четвёртый шаг алгоритма). С этой целью нужно разложить знаменатель на множители. Найдем корни уравнения:
Таким образом,
Нам известно разложение следующей рациональной функции:
Рассмотрим первую дробь и поделим в ней числитель и знаменатель на
Аналогично (но с делением на
Таким образом,
и, следовательно,
Данное выражение можно упростить, если обратить внимание на то, что
Произвольное соотношение
Рассмотрим следующее рекуррентное соотношение:
Следующие действия аналогичны тем, которые мы делали для чисел Фибоначчи:
Вспомним, что
поэтому
Последняя сумма может быть свёрнута:
Подставив свёрнутое выражение обратно, имеем,
Таким образом, наше последнее уравнение примет вид
Это уравнение для производящей функции. Из него выражаем
Разложим знаменатель на множители и разобьём дробь на сумму простых дробей:
Дальше мы знаем что делать со всеми этими дробями, кроме, разве лишь, первой. Рассмотрим её (без множителя) подробнее:
Теперь соберём ответ:
Значит,