Теорема о поглощении — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 69: Строка 69:
  
  
Рассмотрим путь из <tex>i</tex>-го состояния в поглощающее состояние <tex>j</tex>. Рассмотрим марковскую цепь через <tex>m</tex> шагов. Пусть <tex>p_{i}<1</tex> — вероятность того, что через <tex>m_i</tex> шагов из состояния <tex>i</tex> мы не попадем в поглощающее состояние.
+
Рассмотрим путь из <tex>i</tex>-го состояния в поглощающее состояние <tex>j</tex>. Пусть мы совершили <tex>k</tex> шагов из состояния <tex>i</tex>, тогда обозначим <tex>p_{k}</tex> — вероятность попасть в поглощающее состояние <tex>j</tex> за такое количество шагов. Заметим, что <tex>p_{k} < 1</tex>
Теперь обобщим в большую сторону для всех состояний <tex>i</tex>: пусть <tex>m = \max(m_i)</tex>, а <tex>p = \max(p_i)< 1</tex>
 
  
Тогда вероятность перехода в состояние <tex>j</tex> на шаге <tex>m</tex> равна <tex>\sum\limits_{j} {q^{m}_{ij}}</tex>, где  <tex>q_{ij}^{m}</tex> — элемент матрицы <tex>Q^{m}</tex>.  
+
Теперь обобщим в большую сторону для любого количества шагов: пусть <tex>m = \max(k)</tex>, а <tex>p = \max(p_{k})< 1</tex>. В таком случае <tex>p</tex> — наибольшая вероятность попасть в поглощающее состояние <tex>j</tex>, совершив при этом не более чем <tex>m</tex> шагов.
  
В то же время, <tex>\sum\limits_{j} {q^m_{ij}}\leqslant p</tex>. Возведем обе части в степень <tex>k \rightarrow \infty</tex>, получим:  <tex>\sum\limits_{j} {q^{mk}_{ij}}\leqslant p^k\xrightarrow{k\xrightarrow{}+\infty}0</tex>
+
Тогда вероятность перехода в состояние <tex>j</tex> на шаге <tex>m</tex> равна <tex>p_{m} = \sum\limits_{j} {q^{m}_{ij}}</tex>, где  <tex>q_{ij}^{m}</tex> — элемент матрицы <tex>Q^{m}</tex>.
 +
 
 +
В то же время, <tex>\sum\limits_{j} {q^m_{ij}}\leqslant p</tex> потому что <tex>p_{m} \leqslant p, \forall m</tex> по условию обозначения <tex>p</tex>. Возведем обе части в степень <tex>k \rightarrow \infty</tex>, получим:  <tex>\sum\limits_{j} {q^{mk}_{ij}}\leqslant p^k\xrightarrow{k\xrightarrow{}+\infty}0</tex>
  
 
В итоге получаем, что непоглощающие состояния стремятся к <tex>0</tex>, а значит поглощающие в итоге приходят к <tex>1</tex>, то есть цепь приходит в поглощающее состояние.
 
В итоге получаем, что непоглощающие состояния стремятся к <tex>0</tex>, а значит поглощающие в итоге приходят к <tex>1</tex>, то есть цепь приходит в поглощающее состояние.

Версия 17:12, 18 марта 2018

Определение:
Матрицу [math]Q[/math] называют непоглощающей (англ. not-absorbing), если она не содержит поглощающих состояний. То есть [math]q_{ii} \neq 1, \forall i [/math]


Определение:
Стохастическую матрицу с [math]r[/math] поглощающими состояниями и [math]t[/math] непоглощающими, можно перевести в каноническую форму (англ. canonical form):

[math]P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix}[/math] ,

где [math]I[/math] — единичная матрица ([math]r \times r[/math]), [math]0[/math] — нулевая матрица ([math]r \times t[/math]), [math]R[/math] — ненулевая поглощающая матрица ([math]t \times r[/math]) и [math]Q[/math] — непоглощающая ([math]t \times t[/math]). Первые [math]t[/math] состояний переходные и последние [math]r[/math] состояний поглощающие.


Теорема (о поглощении):
Если цепь поглощающая, то с вероятностью, равной [math]1[/math], она перейдет в поглощающее состояние.
Доказательство:
[math]\triangleright[/math]

Пусть [math]P[/math]матрица переходов, где элемент [math]p_{ij}[/math] равен вероятности перехода из [math]i[/math]-го состояния в [math]j[/math]-ое. Приведем ее в каноническую форму:


[math]P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix}[/math]


Пусть вектор [math]c^{(t)}[/math] — вектор вероятности нахождения на шаге [math]t[/math]. Он вычисляется, как произведение вектора на нулевом шаге на матрицу перехода в степени [math]t[/math]. [math] c^{(t)} = c^{(0)} \times P^t[/math] Рассмотрим, что представляет из себя возведение матрицы [math]P[/math] в степень:


Для [math]t = 2[/math] :

[math]P^{2} = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix} \times \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix} = \begin{pmatrix} Q \times Q + R \times 0 & Q \times R + R \times I \\ 0 \times Q + I \times 0 & 0 \times R + I \times I \end{pmatrix} = \begin{pmatrix} Q^2 & X \\ 0 & I \end{pmatrix}[/math] .

Произведение единичной матрицы на саму себя есть единичная матрица ([math]I \times I = I[/math]); [math]X[/math] — некоторые значения (не важны для доказательства теоремы, так как чтобы доказать теорему достаточно доказать, что непоглощающие состояния стремятся к 0).

Продолжив вычисления, получим, что [math]P^n[/math] имеет следующий вид: [math]\begin{pmatrix} Q^n & X \\ 0 & I \end{pmatrix}[/math] .

Докажем, что [math]Q^n \xrightarrow{} 0[/math], при [math] n\xrightarrow{}+\infty[/math].


Рассмотрим путь из [math]i[/math]-го состояния в поглощающее состояние [math]j[/math]. Пусть мы совершили [math]k[/math] шагов из состояния [math]i[/math], тогда обозначим [math]p_{k}[/math] — вероятность попасть в поглощающее состояние [math]j[/math] за такое количество шагов. Заметим, что [math]p_{k} \lt 1[/math]

Теперь обобщим в большую сторону для любого количества шагов: пусть [math]m = \max(k)[/math], а [math]p = \max(p_{k})\lt 1[/math]. В таком случае [math]p[/math] — наибольшая вероятность попасть в поглощающее состояние [math]j[/math], совершив при этом не более чем [math]m[/math] шагов.

Тогда вероятность перехода в состояние [math]j[/math] на шаге [math]m[/math] равна [math]p_{m} = \sum\limits_{j} {q^{m}_{ij}}[/math], где [math]q_{ij}^{m}[/math] — элемент матрицы [math]Q^{m}[/math].

В то же время, [math]\sum\limits_{j} {q^m_{ij}}\leqslant p[/math] потому что [math]p_{m} \leqslant p, \forall m[/math] по условию обозначения [math]p[/math]. Возведем обе части в степень [math]k \rightarrow \infty[/math], получим: [math]\sum\limits_{j} {q^{mk}_{ij}}\leqslant p^k\xrightarrow{k\xrightarrow{}+\infty}0[/math]

В итоге получаем, что непоглощающие состояния стремятся к [math]0[/math], а значит поглощающие в итоге приходят к [math]1[/math], то есть цепь приходит в поглощающее состояние.
[math]\triangleleft[/math]

См.также

Источники информации

  • Дж. Кемени, Дж. Снелл — "Конечные цепи Маркова", издание "Наука", 1970г., стр. 62