B+-дерево — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Структура дерева)
Строка 8: Строка 8:
  
 
== Структура ==
 
== Структура ==
Свойства B<tex>^{+}</tex> дерева аналогичны [[B-дерево#Структура| свойствам B-дерева]]
+
Свойства B<tex>^{+}</tex> дерева аналогичны [[B-дерево#Структура| свойствам B-дерева]] (с учетом отличий описанных выше).
  
 
=== Структура узла ===
 
=== Структура узла ===
Строка 21: Строка 21:
 
     '''int'''  t <span style="color:#008000">      // минимальная степень дерева</span>
 
     '''int'''  t <span style="color:#008000">      // минимальная степень дерева</span>
 
     '''Node''' root <span style="color:#008000">  // указатель на корень дерева</span>
 
     '''Node''' root <span style="color:#008000">  // указатель на корень дерева</span>
 +
 +
== Оценка высоты дерева ==
 +
{{Теорема|statement=Если <tex>n \geqslant 1</tex>, то для B<tex>^{+}</tex>-дерева c <tex>n</tex> узлами и минимальной степенью <tex>t \geqslant 2</tex>
 +
:<tex>h \leqslant \log_t\dfrac{n}{2} + 1</tex>
 +
|proof=
 +
Так как <tex>n \geqslant 1</tex>, то корень B<tex>^{+}</tex>-дерева <tex>T</tex> содержит хотя бы один ключ, а все остальные узлы — хотя бы <tex>t - 1</tex> ключей. <tex>T</tex> имеет хотя бы <tex>2</tex> узла на высоте <tex>1</tex>, не менее <tex>2t</tex> узлов на глубине <tex>2</tex>,  и так далее. То есть на глубине <tex>h</tex>, оно имеет  хотя бы <tex>2t^{h-1}</tex> узлов. Так как сами ключи хранятся только в листах, а во внутренних вершинах лишь их копии, то для <tex>n</tex> ключей
 +
<tex>n \geqslant 2t^{h-1}</tex>
 +
 +
:<tex>t^{h-1} \leqslant \dfrac{n}{2}</tex>
 +
 +
:<tex>h-1 \leqslant \log_t\dfrac{n}{2}</tex>
 +
 +
:<tex>h \leqslant \log_t\dfrac{n}{2} + 1</tex>
 +
}}
 +
 +
Как можно заметить, высота B<tex>^{+}</tex>-дерева не более чем на 1 отличается от [[B-дерево#Высота|высоты B-дерева]], то есть хранение значений только в листах почти не ухудшает эффективность дерева
  
 
== Примeчания ==
 
== Примeчания ==
 
<references/>
 
<references/>

Версия 03:53, 26 марта 2018

B[math]^{+}[/math]-дерево (англ. B[math]^{+}[/math]-tree) — структура данных на основе B-дерева, сбалансированное [math]n[/math]-арное дерево поиска с переменным, но зачастую большим количеством потомков в узле. B[math]^{+}[/math]-деревья имеют очень высокий коэффициент ветвления (число указателей из родительского узла на дочерние, обычно порядка 100 или более), что снижает количество операций ввода-вывода, требующих поиска элемента в дереве.

Где используется

Изначально структура предназначалась для эффективного поиска в блочно-ориентированной среде хранения — в частности, для файловых систем. Структура широко применяется в таких файловых системах, как NTFS[1], ReiserFS[2], NSS[3], JFS[4], ReFS[5]. Различные реляционные системы управления базами данных, такие как Microsoft SQL Server[6], Oracle Database[7], SQLite[8] используют B[math]^{+}[/math]-деревья для табличных индексов.

Отличия от B-дерева

В B-дереве во всех вершинах хранятся ключи вместе с сопутствующей информацией. В B[math]^{+}[/math]-деревьях вся информация хранится в листьях, а во внутренних узлах хранятся только копии ключей. Таким образом удается получить максимально возможную степень ветвления во внутренних узлах. Кроме того, листовой узел может включать в себя указатель на следующий листовой узел для ускорения последовательного доступа, что решает одну из главных проблем B-деревьев.

Структура

Свойства B[math]^{+}[/math] дерева аналогичны свойствам B-дерева (с учетом отличий описанных выше).

Структура узла

struct Node
   bool leaf    // является ли узел листом
   int  n       // количество ключей узла
   int  key[]   // ключи узла
   Node c[]     // указатели на детей узла
   Node next    // указатели на следующий элемент (для внутренних вершин = null)

Структура дерева

struct BPlusTree
   int  t       // минимальная степень дерева
   Node root    // указатель на корень дерева

Оценка высоты дерева

Теорема:
Если [math]n \geqslant 1[/math], то для B[math]^{+}[/math]-дерева c [math]n[/math] узлами и минимальной степенью [math]t \geqslant 2[/math]
[math]h \leqslant \log_t\dfrac{n}{2} + 1[/math]
Доказательство:
[math]\triangleright[/math]

Так как [math]n \geqslant 1[/math], то корень B[math]^{+}[/math]-дерева [math]T[/math] содержит хотя бы один ключ, а все остальные узлы — хотя бы [math]t - 1[/math] ключей. [math]T[/math] имеет хотя бы [math]2[/math] узла на высоте [math]1[/math], не менее [math]2t[/math] узлов на глубине [math]2[/math], и так далее. То есть на глубине [math]h[/math], оно имеет хотя бы [math]2t^{h-1}[/math] узлов. Так как сами ключи хранятся только в листах, а во внутренних вершинах лишь их копии, то для [math]n[/math] ключей [math]n \geqslant 2t^{h-1}[/math]

[math]t^{h-1} \leqslant \dfrac{n}{2}[/math]
[math]h-1 \leqslant \log_t\dfrac{n}{2}[/math]
[math]h \leqslant \log_t\dfrac{n}{2} + 1[/math]
[math]\triangleleft[/math]

Как можно заметить, высота B[math]^{+}[/math]-дерева не более чем на 1 отличается от высоты B-дерева, то есть хранение значений только в листах почти не ухудшает эффективность дерева

Примeчания