Производящая функция Дирихле — различия между версиями
(→Обратимость) (Метки: правка с мобильного устройства, правка из мобильной версии) |
(Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 112: | Строка 112: | ||
|proof = | |proof = | ||
Перемножим функции <tex>M(s)</tex> и <tex>\zeta(s)</tex> и рассмотрим коэффициент при <tex>n^{-s}</tex>. Назовём его <tex>f_n</tex>. Тогда | Перемножим функции <tex>M(s)</tex> и <tex>\zeta(s)</tex> и рассмотрим коэффициент при <tex>n^{-s}</tex>. Назовём его <tex>f_n</tex>. Тогда | ||
− | <tex>f_n = \sum\limits_{k=0}^{t_n}(-1)^{k} | + | <tex>f_n = \sum\limits_{k=0}^{t_n}(-1)^{k}\dbinom{t_n}{k}</tex>. |
Действительно, пусть разложение n на простые множители имеет вид <tex>n = p^{k_1}_1\cdot\ldots\cdot p^{k_{t_n}}_{t_n}</tex>. Тогда коэффициент при <tex>m^{−s}</tex> функции <tex>M(s)</tex> участвует в произведении с ненулевым коэффициентом в том и только в том случае, если <tex>m</tex>является произведением некоторого подмножества множества простых чисел <tex>n = p_1\ldots p_{t_n}</tex>. Число таких подмножеств из <tex>k</tex> элементов равно <tex>\dbinom{t_n}{k}</tex>, а знак соответствующего коэффициента при <tex>m^{−s}</tex> равен <tex>(-1)^{k}</tex>. | Действительно, пусть разложение n на простые множители имеет вид <tex>n = p^{k_1}_1\cdot\ldots\cdot p^{k_{t_n}}_{t_n}</tex>. Тогда коэффициент при <tex>m^{−s}</tex> функции <tex>M(s)</tex> участвует в произведении с ненулевым коэффициентом в том и только в том случае, если <tex>m</tex>является произведением некоторого подмножества множества простых чисел <tex>n = p_1\ldots p_{t_n}</tex>. Число таких подмножеств из <tex>k</tex> элементов равно <tex>\dbinom{t_n}{k}</tex>, а знак соответствующего коэффициента при <tex>m^{−s}</tex> равен <tex>(-1)^{k}</tex>. | ||
Версия 15:56, 29 марта 2018
Определение: |
Производящая функция Дирихле (англ. Dirichlet generating functions) последовательности , | — это формальный ряд вида:
Содержание
Примечание
- Нумерация коэффициентов производящих функций Дирихле начинается с единицы, а не с нуля, как это было в случае обыкновенных производящих функций.
- Вместо переменной используется . Это изменение связано больше с традициями, чем с математикой.
- Принято писать вместо . Это считается более удобной формой.
Операции над производящими функциями Дирихле
Сложение
Сложение производящих функций соответствует обычному почленному сложению последовательностей.
Умножение
Если
и — производящие функции Дирихле двух последовательностей и соответственно, то , где внутреннее суммирование ведётся по всем разложениям числа в произведение двух сомножителей.Единица
Роль единицы при умножении производящих функций Дирихле играет функция
.Обратимость
Любая производящая функция Дирихле
с ненулевым свободным членом ( ), обратима, то есть для неё существует функция , такая что .Действительно, по правилу перемножения функций имеем
, что в нашем случае равно . Получаем, что , тогда . Остальные слагаемые равны . Рассмотрим их. Известно, что коэффициент перед равен . Отсюда .
Применение
Производящие функции Дирихле используются в мультипликативной теории чисел. Введение производящей функции Дирихле обусловлено их поведением относительно умножения, что позволяет контролировать мультипликативную структуру натуральных чисел.
Определение: |
Мультипликативная последовательность (multiplicative sequence) — последовательность | , такая что для любых чисел и .
Заметим, что для мультипликативных последовательностей
. Иначе равенство не выполнено при .Утверждение: |
Последовательность является мультипликативной тогда и только тогда, когда соответствующая ей производящая функция Дирихле имеет вид
, где принимает все простые значения. |
Примеры
Самой известной среди производящих функций Дирихле является дзета-функция Римана.
Определение: |
Дзета-функция Римана (англ. The Riemann zeta function) — производящая функция Дирихле, отвечающая последовательности
| , состоящей из единиц:
Таблица содержит известные производящие функции. Первая из них — это дзета-функция Римана, состоящая из единиц. является последовательностью количества делителей числа[1]. — последовательность Мёбиуса [2]. — последовательность факторизаций числа, — функция Эйлера.
Последовательность | ||
Свойства производящих функций Дирихле
Теорема: |
Функция Мёбиуса имеет вид:
, где |
Доказательство: |
Перемножим функции Действительно, пусть разложение n на простые множители имеет вид и и рассмотрим коэффициент при . Назовём его . Тогда . . Тогда коэффициент при функции участвует в произведении с ненулевым коэффициентом в том и только в том случае, если является произведением некоторого подмножества множества простых чисел . Число таких подмножеств из элементов равно , а знак соответствующего коэффициента при равен . |
Теорема: |
Пусть такие, что . Тогда . |
Доказательство: |
Равенство | означает, что , где — производящие функции Дирихле для последовательностей и соответственно. Домножим левую и правую части на . Получаем , а правая часть равна , так как и сокращаются по предыдущей теореме.
Утверждение: |
, где принимает все простые значения. |
Данное равенство верно, если | . Но последнее равенство доказывается раскрытием скобок. В результирующей последовательности будут участвовать лишь те слагаемые, для которых представляется в виде произведения попарно различных простых множителей, а их количество определяет знак. Эта последовательность по определению является последовательностью Мёбиуса.