NP-полнота задачи о раскраске графа — различия между версиями
Alant (обсуждение | вклад) |
Alant (обсуждение | вклад) |
||
| Строка 10: | Строка 10: | ||
=== Доказательство принадлежности задачи классу NPH === | === Доказательство принадлежности задачи классу NPH === | ||
Сведем задачу 3CNFSAT к данной.<br/> | Сведем задачу 3CNFSAT к данной.<br/> | ||
| − | Пусть дана <math> \varphi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land ... \land (a_m \lor b_m \lor c_m) </math>, где <math>a_i</math>, <math>b_i</math> и <math>c_i</math> - переменные или их отрицания (возможно, с повторениями). Сами переменные будем обозначать <math> \{x_i\}_{i=1}^n </math>.<br/> Заметим следующие тривиальные факты, которые будут использованы при построении графа: | + | Пусть дана формула <math> \varphi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land ... \land (a_m \lor b_m \lor c_m) </math>, где <math>a_i</math>, <math>b_i</math> и <math>c_i</math> - переменные или их отрицания (возможно, с повторениями). Сами переменные будем обозначать <math> \{x_i\}_{i=1}^n </math>.<br/> Заметим следующие тривиальные факты, которые будут использованы при построении графа: |
# Ровно одно выражение из <math> \{x_i, \lnot {x_i}\} </math> истинно; | # Ровно одно выражение из <math> \{x_i, \lnot {x_i}\} </math> истинно; | ||
# <math> \varphi \in 3CNFSAT \Leftrightarrow \forall {j} (a_j \lor b_j \lor c_j) = 1 </math> | # <math> \varphi \in 3CNFSAT \Leftrightarrow \forall {j} (a_j \lor b_j \lor c_j) = 1 </math> | ||
Версия 12:13, 10 марта 2010
Содержание
Формулировка задачи
Даны граф и число . Необходимо проверить, правда ли, что можно раскрасить вершины графа в цветов так, чтобы любые две вершины, соединённые ребром, имели разные цвета.
Утверждение
Сформулированная выше задача NP-полна.
Доказательство
Доказательство принадлежности задачи классу NP
Сертификатом для решения данной задачи будет последовательность , где , а обозначает цвет i-ой вершины. Проверку корректности такого сертификата легко осуществить за полиномиальное время, например, перебором всех пар вершин и проверкой того, что в случае, когда они соединены ребром, они имеют разные цвета, лежащие на отрезке .
Доказательство принадлежности задачи классу NPH
Сведем задачу 3CNFSAT к данной.
Пусть дана формула , где , и - переменные или их отрицания (возможно, с повторениями). Сами переменные будем обозначать .
Заметим следующие тривиальные факты, которые будут использованы при построении графа:
- Ровно одно выражение из истинно;
Построим множества V и E будущего графа следущим образом:
- ;
- ;
Будем интерпретировать как цвет (соотвественно, вершина всегда покрашена в цвет ), причем - цвет, обозначающий истину.
- добавим в V вершины , отвечающие и соответственно, и соединим каждую такую пару ребром;
- соединим каждую вершину из со всеми , кроме и .
Этим мы обеспечили выполнение первого условия из приведенных выше, так как теперь ровно одна вершина из окрашена в цвет , а другая - в цвет
Осталось сделать так, чтобы возможность сделать истинной каждую скобку соответствовала необходимости покрасить хотя бы одну из вершин, соответствующих переменным в ней, в цвет .
- Для этого для каждой скобки вида добавим вершину , соединив ее с соответствующими , а также со всеми , кроме . Тем самым, "не дает" покрасить все три вершины, отвечающие термам в скобке, в "ложный" цвет (напомним, что все цвета, кроме мы условились называть "ложными").
Доказательство корректности сведения
Покажем теперь, что такой граф будет (n+1)-раскрашиваемым тогда и только тогда, когда исходная формула принадлежала 3CNFSAT.
- . Из построения ясно, что можно покрасить вершины полученного графа, соответствующие истинным термам набора, обращающего формулу в истину, в цвет c0, а вершины, соответствующие ложным термам, - в соответствующие "ложные" цвета.
- . Построим по раскраске графа набор переменных , в котором истинно тогда и только тогда, когда покрашена в цвет . Этот набор непротиворечив (мы не попытались одну и ту же переменную сделать и истинной, и ложной одновременно). Он также обращает формулу в истину, так как по постронию в каждой скобке есть хотя бы один истинный терм.