Дерево отрезков. Построение — различия между версиями
Mervap (обсуждение | вклад) |
Mervap (обсуждение | вклад) (→Построение дерева) |
||
Строка 9: | Строка 9: | ||
Пусть исходный массив <tex>a</tex> состоит из <tex>n</tex> элементов. Для удобства построения увеличим длину массива <tex>a</tex> так, чтобы она равнялась ближайшей степени двойки, т.е. <tex>2^k</tex>, где <tex>2^k \geqslant n</tex>. Это сделано, для того чтобы не допустить обращение к несуществующим элементам массива при дальнейшем процессе построения. Пустые элементы необходимо заполнить нейтральными элементами моноида. Тогда для хранения дерева отрезков понадобится массив <tex>t</tex> из <tex>2^{k+1}</tex> элементов, поскольку в худшем случае количество вершин в дереве можно оценить суммой <tex>n+\dfrac{n}{2}+\dfrac{n}{4} \ldots +1 < 2n</tex>, где <tex>n=2^k</tex>. Таким образом, структура занимает линейную память. | Пусть исходный массив <tex>a</tex> состоит из <tex>n</tex> элементов. Для удобства построения увеличим длину массива <tex>a</tex> так, чтобы она равнялась ближайшей степени двойки, т.е. <tex>2^k</tex>, где <tex>2^k \geqslant n</tex>. Это сделано, для того чтобы не допустить обращение к несуществующим элементам массива при дальнейшем процессе построения. Пустые элементы необходимо заполнить нейтральными элементами моноида. Тогда для хранения дерева отрезков понадобится массив <tex>t</tex> из <tex>2^{k+1}</tex> элементов, поскольку в худшем случае количество вершин в дереве можно оценить суммой <tex>n+\dfrac{n}{2}+\dfrac{n}{4} \ldots +1 < 2n</tex>, где <tex>n=2^k</tex>. Таким образом, структура занимает линейную память. | ||
− | Процесс построения дерева заключается в заполнении массива <tex>t</tex>. Заполним этот массив таким образом, чтобы <tex>i</tex>-й элемент являлся бы результатом некоторой бинарной операции (для каждой конкретной задачи своей) от элементов c номерами <tex>2i+1</tex> и <tex>2i+2</tex>, то есть родитель являлся результатом бинарной операции от своих сыновей (обозначим в коде эту операцию как <tex> \circ </tex>). Один из вариантов — делать рекурсивно. Пусть у нас имеются исходный массив <tex>a</tex>, а также переменные <tex>\mathtt{tl}</tex> и <tex>\mathtt{tr}</tex>, обозначающие границы текущего полуинтервала. Запускаем процедуру построения от корня дерева отрезков (<tex>i=0</tex>, <tex>\mathtt{tl}=0</tex>, <tex>\mathtt{tr}=n</tex>), а сама процедура построения, если её вызвали не от листа, вызывает себя от каждого из двух сыновей и суммирует вычисленные значения, а если её вызвали от листа — то просто записывает в себя значение этого элемента массива (Для этого у нас есть исходный массив <tex> a </tex>). Асимптотика построения дерева отрезков составит, таким образом, <tex>O(n)</tex>. | + | Процесс построения дерева заключается в заполнении массива <tex>t</tex>. Заполним этот массив таким образом, чтобы <tex>i</tex>-й элемент являлся бы результатом некоторой бинарной операции (для каждой конкретной задачи своей) от элементов c номерами <tex>2i+1</tex> и <tex>2i+2</tex>, то есть родитель являлся результатом бинарной операции от своих сыновей (обозначим в коде эту операцию как "<tex> \circ </tex>"). Один из вариантов — делать рекурсивно. Пусть у нас имеются исходный массив <tex>a</tex>, а также переменные <tex>\mathtt{tl}</tex> и <tex>\mathtt{tr}</tex>, обозначающие границы текущего полуинтервала. Запускаем процедуру построения от корня дерева отрезков (<tex>i=0</tex>, <tex>\mathtt{tl}=0</tex>, <tex>\mathtt{tr}=n</tex>), а сама процедура построения, если её вызвали не от листа, вызывает себя от каждого из двух сыновей и суммирует вычисленные значения, а если её вызвали от листа — то просто записывает в себя значение этого элемента массива (Для этого у нас есть исходный массив <tex> a </tex>). Асимптотика построения дерева отрезков составит, таким образом, <tex>O(n)</tex>. |
Выделяют два основных способа построения дерева отрезков: построение снизу и построение сверху. При построении [[Реализация запроса в дереве отрезков снизу | снизу]] алгоритм поднимается от листьев к корню (Просто начинаем заполнять элементы массива <tex>t</tex> от большего индекса к меньшему, таким образом при заполнении элемента <tex> i </tex> его дети <tex>2i+1</tex> и <tex>2i+2</tex> уже будут заполнены, и мы с легкостью посчитаем бинарную операцию от них), а при построении [[Реализация запроса в дереве отрезков сверху | сверху]] спускается от корня к листьям. Особенные изменения появляются в реализации запросов к таким деревьям отрезков. | Выделяют два основных способа построения дерева отрезков: построение снизу и построение сверху. При построении [[Реализация запроса в дереве отрезков снизу | снизу]] алгоритм поднимается от листьев к корню (Просто начинаем заполнять элементы массива <tex>t</tex> от большего индекса к меньшему, таким образом при заполнении элемента <tex> i </tex> его дети <tex>2i+1</tex> и <tex>2i+2</tex> уже будут заполнены, и мы с легкостью посчитаем бинарную операцию от них), а при построении [[Реализация запроса в дереве отрезков сверху | сверху]] спускается от корня к листьям. Особенные изменения появляются в реализации запросов к таким деревьям отрезков. |
Версия 00:05, 3 мая 2018
Дерево отрезков (англ. Segment tree) — это структура данных, которая позволяет за асимптотику моноиде. Например, суммирование на множестве натуральных чисел, поиск минимума на любом числовом множестве, перемножение матриц на множестве матриц размера , объединение множеств, поиск наибольшего общего делителя на множестве целых чисел и многочленов.
реализовать любые операции, определяемые на множестве, на котором данная операция ассоциативна, и существует нейтральный элемент относительно этой операции, то есть наПри этом дополнительно возможно изменение элементов массива: как изменение значения одного элемента, так и изменение элементов на целом подотрезке массива, например разрешается присвоить всем элементам какое-либо значение, либо прибавить ко всем элементам массива какое-либо число. Структура занимает памяти, а ее построение требует времени.
Структура
Структура представляет собой дерево, листьями которого являются элементы исходного массива. Другие вершины этого дерева имеют по
ребенка и содержат результат операции от своих детей (например минимум или сумму). Таким образом, корень содержит результат искомой функции от всего массива , левый ребёнок корня содержит результат функции на , а правый, соответственно результат на . И так далее, продвигаясь вглубь дерева.Построение дерева
Пусть исходный массив
состоит из элементов. Для удобства построения увеличим длину массива так, чтобы она равнялась ближайшей степени двойки, т.е. , где . Это сделано, для того чтобы не допустить обращение к несуществующим элементам массива при дальнейшем процессе построения. Пустые элементы необходимо заполнить нейтральными элементами моноида. Тогда для хранения дерева отрезков понадобится массив из элементов, поскольку в худшем случае количество вершин в дереве можно оценить суммой , где . Таким образом, структура занимает линейную память.Процесс построения дерева заключается в заполнении массива
. Заполним этот массив таким образом, чтобы -й элемент являлся бы результатом некоторой бинарной операции (для каждой конкретной задачи своей) от элементов c номерами и , то есть родитель являлся результатом бинарной операции от своих сыновей (обозначим в коде эту операцию как " "). Один из вариантов — делать рекурсивно. Пусть у нас имеются исходный массив , а также переменные и , обозначающие границы текущего полуинтервала. Запускаем процедуру построения от корня дерева отрезков ( , , ), а сама процедура построения, если её вызвали не от листа, вызывает себя от каждого из двух сыновей и суммирует вычисленные значения, а если её вызвали от листа — то просто записывает в себя значение этого элемента массива (Для этого у нас есть исходный массив ). Асимптотика построения дерева отрезков составит, таким образом, .Выделяют два основных способа построения дерева отрезков: построение снизу и построение сверху. При построении снизу алгоритм поднимается от листьев к корню (Просто начинаем заполнять элементы массива от большего индекса к меньшему, таким образом при заполнении элемента его дети и уже будут заполнены, и мы с легкостью посчитаем бинарную операцию от них), а при построении сверху спускается от корня к листьям. Особенные изменения появляются в реализации запросов к таким деревьям отрезков.
Реализация построения сверху:
function treeBuild(T a[], int i, int tl, int tr): // мы находимся в вершине с номером i, который отвечает за полуинтервал [tl, tr)
if tl == tr
return
if tr - tl == 1
t[i] = a[tl]
else
tm = (tl + tr) / 2 // середина отрезка
treeBuild(a, 2 * i + 1, tl, tm)
treeBuild(a, 2 * i + 2, tm, tr)
t[i] = t[2 * i + 1]
t[2 * i + 2]
Реализация построения снизу:
function treeBuild(T a[]):
for i = 0 to n - 1
t[n - 1 + i] = a[i]
for i = n - 2 downto 0
t[i] = t[2 * i + 1]
t[2 * i + 2]