Использование производящих функций для доказательства тождеств — различия между версиями
Строка 1: | Строка 1: | ||
+ | В дальнейшем будем обозначать <tex>[x^n]A(x)</tex> коэффициент при <tex>x^n</tex> в формальном степенном ряде <tex>A(x)</tex> | ||
+ | |||
{{Задача | {{Задача | ||
|definition = Доказать, что <tex>\sum\limits_{i = 0}^{2n} (-1)^i \cdot (i + 1) \cdot (2n + 1 - i) = n + 1</tex> | |definition = Доказать, что <tex>\sum\limits_{i = 0}^{2n} (-1)^i \cdot (i + 1) \cdot (2n + 1 - i) = n + 1</tex> | ||
Строка 7: | Строка 9: | ||
Рассмотрим известную нам производящую функцию | Рассмотрим известную нам производящую функцию | ||
− | <tex>\dfrac{1}{1 - x} = 1 + x + x^2 + \ldots = \sum\limits_{i = 0}^{\infty}x^i</tex> | + | <tex>A(x) = \dfrac{1}{1 - x} = 1 + x + x^2 + \ldots = \sum\limits_{n = 0}^{\infty}x^n</tex> |
+ | |||
+ | Возводя её в квадрат, по определению [[Арифметические действия с формальными степенными рядами#def_mul | произведения формальных степенных рядов]], получаем <tex>A^2(x) = \dfrac{1}{1 - x} \cdot \dfrac{1}{1 - x} = (\sum\limits_{n = 0}^{\infty}x^n) \cdot (\sum\limits_{n = 0}^{\infty}x^n) = </tex> | ||
+ | |||
+ | <tex>= \sum\limits_{n = 0}^{\infty} x^n \cdot [x^n]A^2(x) = \sum\limits_{n = 0}^{\infty} x^n \cdot (\sum\limits_{i = 0}^{n}([x^i]A(x) \cdot [x^{n - i}]A(x))) = \sum\limits_{n = 0}^{\infty} x^n \cdot (\sum\limits_{i = 0}^{n}(1 \cdot 1))</tex> |
Версия 21:09, 22 мая 2018
В дальнейшем будем обозначать
коэффициент при в формальном степенном ряде
Задача: |
Доказать, что |
Докажем, что
Рассмотрим известную нам производящую функцию
Возводя её в квадрат, по определению произведения формальных степенных рядов, получаем