Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 17: | Строка 17: | ||
Перепишем отношение <tex>\cfrac{a_{n+1}}{a_n}</tex> в виде | Перепишем отношение <tex>\cfrac{a_{n+1}}{a_n}</tex> в виде | ||
− | <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{1 + \alpha_1 \cdot n^{-1} + \ldots + \alpha_k \cdot n^{-k}}{1 + \beta_1 \cdot n^{-1} + \ldots + \beta_k \cdot n^{-k}}= | + | <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{1 + \alpha_1 \cdot n^{-1} + \ldots + \alpha_k \cdot n^{-k}}{1 + \beta_1 \cdot n^{-1} + \ldots + \beta_k \cdot n^{-k}}=A \cdot f(\cfrac{1}{n})</tex>, |
где | где |
Версия 01:04, 27 мая 2018
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов степени | , где , называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела применим критерий Коши[1], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[2]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то, ,
. Теперь интересующее нас выражение в левой части неравенства [3]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Замечание: Предположения леммы не позволяют определить величину константы
. Действительно, умножив последовательность на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для