Классы чисел — различия между версиями
Senya (обсуждение | вклад) (→Определение целых чисел) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Senya (обсуждение | вклад) (→Теоретико-множественное определение) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 45: | Строка 45: | ||
* <tex>3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}</tex> | * <tex>3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}</tex> | ||
− | Классы эквивалентности этих множеств относительно биекций также обозначают 0, 1, 2, | + | Классы эквивалентности этих множеств относительно биекций также обозначают <tex>0, 1, 2, \cdots.</tex> |
Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде». | Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде». |
Версия 03:11, 3 июня 2018
Содержание
Определение натуральных чисел
Oсновная статья: Натуральные числа
Неформальное определение
Определение: |
Натура́льные чи́сла (англ. natural numbers, естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). |
Существуют два подхода к определению натуральных чисел — числа, используемые при:
- перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России);
- обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Николя Бурбаки, где натуральные числа определяются как мощность конечных множеств.
Отрицательные и нецелые числа натуральными числами не являются.
Множество всех натуральных чисел принято обозначать знаком
. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.Формальное определение
Определить множество натуральных чисел позволяют аксиомы Пеано (англ. Peano axioms):
Определение: |
Множество
| будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия
Теоретико-множественное определение
Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.
Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:
Числа, заданные таким образом, называются ординальными.
Первые несколько ординальных чисел и соответствующие им натуральные числа:
Классы эквивалентности этих множеств относительно биекций также обозначают
Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».
Определение целых, рациональных, вещественных и комплексных чисел
Определение целых чисел
Определение: |
Множество целых чисел (англ. integers) | определяется как замыкание множества натуральных чисел относительно арифметических операций сложения и вычитания .
Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из натуральных чисел
, чисел вида -n ( ) и числа ноль.Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения.
Отрицательные числа ввели в математический обиход Михаэль Штифель (1487—1567) в книге «Полная арифметика» (1544), и Никола Шюке (1445—1500).
Определение рациональных чисел
Определение: |
Множество рациональных чисел (англ. rational numbers) обозначается | и может быть записано в виде:
Нужно понимать, что численно равные дроби такие как, например, взаимно простыми целым числителем и натуральным знаменателем:
и , входят в это множество как одно число. Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей соЗдесь
— наибольший общий делитель чисел и .Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа
знаменатель , то является целым числом. В этой связи возникают некоторые обманчивые предположения. Однако, хотя кажется, что рациональных чисел больше чем целых, и тех и других счётное число (то есть оба они могут быть перенумерованы натуральными числами, причём явно).Определение вещественных чисел
Oсновная статья: Вещественные числа
Определение: |
Веще́ственное число (англ. real number) — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений. |
С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.
Множество вещественных чисел имеет стандартное обозначение — R (полужирное «R»), или
(blackboard bold «R») от realis — действительный.Определение комплексных чисел
Определение: |
Ко́мпле́ксные чи́сла (англ. complex number) — расширение множества вещественных чисел, обычно обозначается | . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица (одно из решений уравнения ).
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени
с комплексными коэффициентами имеет ровно комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях.
См. также