Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) |
||
Строка 97: | Строка 97: | ||
откуда, умножая на числитель и знаменатель на <tex>n!</tex> и сокращая на <tex>2^{n + 1}</tex>, получаем | откуда, умножая на числитель и знаменатель на <tex>n!</tex> и сокращая на <tex>2^{n + 1}</tex>, получаем | ||
− | <tex>a_n = \cfrac {(2 \cdot n)!}{n! \cdot (n + 1)!} = \cfrac {1}{n + 1} \cdot \ | + | <tex>a_n = \cfrac {(2 \cdot n)!}{n! \cdot (n + 1)!} = \cfrac {1}{n + 1} \cdot \dbinom {2 \cdot n}{n}</tex> |
Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана: | Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана: |
Версия 21:42, 8 июня 2018
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов степени | , где , называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела применим критерий Коши[1], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[2]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то, ,
. Теперь интересующее нас выражение в левой части неравенства [3]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Замечание: Предположения леммы не позволяют определить величину константы
. Действительно, умножив последовательность на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Рассмотрим производящую функцию для чисел Каталана
Возведя ее в квадрат и умножив результат на s, получим
,
что дает нам квадратное уравнение на производящую функцию
откуда
Второй корень уравнения отбрасывается, так как
Найденная производящая функция позволяет найти явную форму для чисел Каталана. Согласно биному Ньютона
откуда, умножая на числитель и знаменатель на
и сокращая на , получаем
Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана:
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае, начиная с некоторого номера, все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для