Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 50: | Строка 50: | ||
<tex>\left| \ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot ( \ln {(n+m)} - \ln n) \right| =</tex> | <tex>\left| \ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot ( \ln {(n+m)} - \ln n) \right| =</tex> | ||
− | <tex>= | + | <tex>= | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - \ldots + \ln a_{n + 1} - \ln a_n - m \cdot \ln A - </tex> |
<tex> - (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} + (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - (\alpha_1 - \beta_1) \cdot (\ln {(n+m)} - \ln n) \Bigg| \leqslant</tex> | <tex> - (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} + (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - (\alpha_1 - \beta_1) \cdot (\ln {(n+m)} - \ln n) \Bigg| \leqslant</tex> |
Версия 00:09, 9 июня 2018
Определение: |
Последовательность, в которой отношение двух соседних членов | равно отношению многочленов степени , где и - порядковый номер члена последовательности, называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной .
|
Доказательство: |
Рассмотрим предел [1] на бесконечности следует, что он равен какому-то , то есть . Из чего можно сделать вывод, что утверждение леммы эквивалентно тому, что существует предел . Для доказательства существования предела применим критерий Коши[2], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[3]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то получаем систему, ,
. Теперь интересующее нас выражение в левой части неравенства [4]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Примеры
Пример. Рассмотрим производящую функцию для чисел Каталана
Возведя ее в квадрат и умножив результат на s, получим
,
что дает нам квадратное уравнение на производящую функцию
откуда
Второй корень уравнения отбрасывается, так как
содержит отрицательные степени s</tex>Найденная производящая функция позволяет найти явную форму для чисел Каталана. Согласно биному Ньютона [5]
откуда, умножая на числитель и знаменатель на
и сокращая на , получаем
Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана:
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае, начиная с некоторого номера, все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для