Расчёт вероятности поглощения в состоянии — различия между версиями
Igusev (обсуждение | вклад) м |
Arimon (обсуждение | вклад) м (Поправлены: источники информации, см.также, дефисы, где нужно, заменены на тире) |
||
Строка 1: | Строка 1: | ||
− | Поглощающее(существенное) состояние цепи Маркова | + | Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>. |
Составим матрицу <tex>G</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из <tex>i</tex>, попадём в поглощающее состояние <tex>j</tex>. | Составим матрицу <tex>G</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из <tex>i</tex>, попадём в поглощающее состояние <tex>j</tex>. | ||
{{Теорема | {{Теорема | ||
Строка 9: | Строка 9: | ||
Матрица <tex>G</tex> определяется их суммированием по всем длинам пути из i в j: <tex>G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }} | Матрица <tex>G</tex> определяется их суммированием по всем длинам пути из i в j: <tex>G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }} | ||
==Псевдокод== | ==Псевдокод== | ||
− | Выведем ответ: в <tex>\mathtt{i}</tex>-ой строке вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии. Естественно, для несущественного состояния это <tex>\mathtt{0}</tex>, в ином случае <tex>\mathtt{p_i=((\sum\limits_{k=1}^{n} G[k][j]+1)/n}</tex> где <tex>\mathtt{j}</tex> | + | Выведем ответ: в <tex>\mathtt{i}</tex>-ой строке вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии. Естественно, для несущественного состояния это <tex>\mathtt{0}</tex>, в ином случае <tex>\mathtt{p_i=((\sum\limits_{k=1}^{n} G[k][j]+1)/n}</tex> где <tex>\mathtt{j}</tex> — номер соответствующий <tex>\mathtt{i}</tex>-ому состоянию в матрице <tex>\mathtt{G}</tex> (т.е. под которым оно располагалось в матрице <tex> \mathtt{R} </tex> т.е. значение <tex>\mathtt{position[i]}</tex>). Прибавлять <tex>\mathtt{1}</tex> нужно т.к. вероятность поглотиться в <tex>\mathtt{i}</tex>-ом поглощающем состоянии, оказавшись изначально в нем же равна <tex>\mathtt{1}</tex>. |
*<tex>\mathtt{probability[i]}</tex> — вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии | *<tex>\mathtt{probability[i]}</tex> — вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии | ||
*<tex>\mathtt{absorbing[i]}</tex> — является ли i-е состояние поглощающим | *<tex>\mathtt{absorbing[i]}</tex> — является ли i-е состояние поглощающим | ||
Строка 26: | Строка 26: | ||
==См. также== | ==См. также== | ||
+ | *[[Марковская цепь]] | ||
*[[Подсчет количества поглощающих состояний и построение матриц переходов марковской цепи]] | *[[Подсчет количества поглощающих состояний и построение матриц переходов марковской цепи]] | ||
+ | *[[Фундаментальная матрица]] | ||
+ | *[[Теорема о поглощении]] | ||
==Источники информации== | ==Источники информации== | ||
− | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D1%8C_%28%D0%BC%D0%B0%D1%82%D0%B5%D0%BC.%29 Википедия | + | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D1%8C_%28%D0%BC%D0%B0%D1%82%D0%B5%D0%BC.%29 Википедия — Цепи Маркова] |
− | * Кемени Дж. | + | * [http://www.studmed.ru/kemeni-dzh-snell-dzh-konechnye-cepi-markova_eb290d9f6f2.html Кемени Дж. и Снелл Дж., "Конечные цепи Маркова"] |
+ | |||
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория: Марковские цепи ]] | [[Категория: Марковские цепи ]] |
Версия 16:28, 16 июня 2018
Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя
. Составим матрицу , элементы которой равны вероятности того, что, выйдя из , попадём в поглощающее состояние .Теорема: |
, где — фундаментальная матрица, и — матрица перехода из несущественных состояний в существенные. |
Доказательство: |
Пусть этот переход будет осуществлён за Матрица шагов: → → → → → j, где все являются несущественными. Тогда рассмотрим сумму , где — матрица переходов между несущественными состояниями, — из несущественного в существенное. определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи |
Псевдокод
Выведем ответ: в
-ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае где — номер соответствующий -ому состоянию в матрице (т.е. под которым оно располагалось в матрице т.е. значение ). Прибавлять нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна .- — вероятность поглощения в -ом состоянии
- — является ли i-е состояние поглощающим
function getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]) float probability[n] for i = 0 to n - 1 prob = 0 if absorbing[i] for j = 0 to nonabs - 1 prob += G[j][position[i]] prob++ prob /= n probability[i] = prob return probability
См. также
- Марковская цепь
- Подсчет количества поглощающих состояний и построение матриц переходов марковской цепи
- Фундаментальная матрица
- Теорема о поглощении