Расчёт вероятности поглощения в состоянии — различия между версиями
Arimon (обсуждение | вклад) м (Поправлены: источники информации, см.также, дефисы, где нужно, заменены на тире) |
Arimon (обсуждение | вклад) м (→См. также) |
||
Строка 30: | Строка 30: | ||
*[[Фундаментальная матрица]] | *[[Фундаментальная матрица]] | ||
*[[Теорема о поглощении]] | *[[Теорема о поглощении]] | ||
+ | *[[Математическое ожидание времени поглощения]] | ||
+ | |||
==Источники информации== | ==Источники информации== | ||
* [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D1%8C_%28%D0%BC%D0%B0%D1%82%D0%B5%D0%BC.%29 Википедия — Цепи Маркова] | * [http://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BF%D1%8C_%28%D0%BC%D0%B0%D1%82%D0%B5%D0%BC.%29 Википедия — Цепи Маркова] |
Версия 17:08, 16 июня 2018
Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя
. Составим матрицу , элементы которой равны вероятности того, что, выйдя из , попадём в поглощающее состояние .Теорема: |
, где — фундаментальная матрица, и — матрица перехода из несущественных состояний в существенные. |
Доказательство: |
Пусть этот переход будет осуществлён за Матрица шагов: → → → → → j, где все являются несущественными. Тогда рассмотрим сумму , где — матрица переходов между несущественными состояниями, — из несущественного в существенное. определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи |
Псевдокод
Выведем ответ: в
-ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае где — номер соответствующий -ому состоянию в матрице (т.е. под которым оно располагалось в матрице т.е. значение ). Прибавлять нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна .- — вероятность поглощения в -ом состоянии
- — является ли i-е состояние поглощающим
function getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]) float probability[n] for i = 0 to n - 1 prob = 0 if absorbing[i] for j = 0 to nonabs - 1 prob += G[j][position[i]] prob++ prob /= n probability[i] = prob return probability
См. также
- Марковская цепь
- Подсчет количества поглощающих состояний и построение матриц переходов марковской цепи
- Фундаментальная матрица
- Теорема о поглощении
- Математическое ожидание времени поглощения