Теорема Гринберга — различия между версиями
Hazzus (обсуждение | вклад) (→Базовые определения: - Новое определение бонда, лемма) |
Hazzus (обсуждение | вклад) (→Теорема Гринберга: - добавлены пояснения к доказательству теоремы) |
||
Строка 41: | Строка 41: | ||
== Теорема Гринберга == | == Теорема Гринберга == | ||
{{Теорема | {{Теорема | ||
− | | | + | |author=Гринберг |
|statement= | |statement= | ||
Пусть связный граф <tex> G </tex> имеет гамильтонов бонд <tex> H </tex> с торцевыми графами <tex> X </tex> и <tex> Y </tex>. Пусть <tex> f_n^{X} </tex> и <tex> f_n^{Y} </tex> {{---}} число вершин в графов <tex> X </tex> и <tex> Y </tex> соответственно, имеющих в <tex> G </tex> степень <tex> n ~ (n = 1, ~ 2, ~ 3, ~ \ldots) </tex>. Тогда: | Пусть связный граф <tex> G </tex> имеет гамильтонов бонд <tex> H </tex> с торцевыми графами <tex> X </tex> и <tex> Y </tex>. Пусть <tex> f_n^{X} </tex> и <tex> f_n^{Y} </tex> {{---}} число вершин в графов <tex> X </tex> и <tex> Y </tex> соответственно, имеющих в <tex> G </tex> степень <tex> n ~ (n = 1, ~ 2, ~ 3, ~ \ldots) </tex>. Тогда: | ||
<center> <tex> \sum\limits_{n=1}^{\infty} (n - 2) (f_n^{X} - f_n^{Y}) = 0 ~~~ \bf{(1)} </tex>. </center> | <center> <tex> \sum\limits_{n=1}^{\infty} (n - 2) (f_n^{X} - f_n^{Y}) = 0 ~~~ \bf{(1)} </tex>. </center> | ||
|proof= | |proof= | ||
− | Так как торцевые графы являются деревьями, то: | + | Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: |
<center> <tex> \sum\limits_{n=1}^{\infty} f_n^{X} = |V(X)| = |E(X)| + 1 ~~~ \textbf{(2)} </tex>. </center> | <center> <tex> \sum\limits_{n=1}^{\infty} f_n^{X} = |V(X)| = |E(X)| + 1 ~~~ \textbf{(2)} </tex>. </center> | ||
− | + | Посчитаем <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} </tex>, то есть количество всех исходящих ребер из <tex>X</tex>. По [[Лемма_о_рукопожатиях | лемме о рукопожатиях]] внутри <tex>X</tex> их будет <tex>2|E(X)|</tex>, но мы не посчитали ребра прикрепленные и к <tex>X</tex>, и к <tex>Y</tex>. Количество таких ребер - количество ребер в бонде <tex>H</tex>, то есть <tex>|E(H)|</tex>. Отсюда: | |
<center> <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} = |E(H)| + 2|E(X)| ~~~ \textbf{(3)} </tex>. </center> | <center> <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} = |E(H)| + 2|E(X)| ~~~ \textbf{(3)} </tex>. </center> | ||
Поэтому: | Поэтому: | ||
− | <center> <tex> \sum\limits_{n=1}^{\infty} (n - 2) f_n^{X} = |E(H)| - 2 ~~~ \textbf{(4)} </tex>. </center> | + | <center> <tex> \textbf{(2)} - 2 \times \textbf{(3)} = \sum\limits_{n=1}^{\infty} (n - 2) f_n^{X} = |E(H)| - 2 ~~~ \textbf{(4)} </tex>. </center> |
− | Аналогичную формулу получаем для графа <tex> Y </tex>. Вычитая ее из | + | Аналогичную формулу получаем для графа <tex> Y </tex>. Вычитая ее из <tex>\textbf{(4)}</tex>, приходим к <tex>\textbf{(1)}</tex>. |
}} | }} | ||
Версия 01:19, 30 сентября 2018
Содержание
Базовые определения
Определение: |
Подграф (англ. subgraph) исходного графа — граф, содержащий некое подмножество вершин данного графа и некое подмножество инцидентных им рёбер. По отношению к подграфу исходный граф называется суперграфом. |
Определение: |
Порождённый подграф (англ. induced subgraph) — подграф, порождённый множеством рёбер исходного графа. Содержит не обязательно все вершины графа, но эти вершины соединены такими же ребрами, как в графе. |
Определение: |
Бонд графа - это минимальный (по включению) непустой разрез графа | .
Лемма: |
Разрез связного графа G является бондом, если и только если оба графа и связны. |
Доказательство: |
Для удобства примем .. Пусть - бонд. Докажем, что для любого ребра граф связен. Действительно, пусть этот граф несвязен и имеет, скажем, компоненты связности и . Тогда , а из связности графа следует, что . Противоречие с минимальностью . Так как для любого ребра граф связен, оба графа и связны. . Если оба графа и — связны, то добавление любого ребра из даст нам связный подграф графа . Значит, в этом случае разрез минимален по включению. В силу связности этот разрез непуст, то есть, является бондом. |
Определение: |
Подграфы | и из предыдущей леммы называются торцевыми графами.
Также стоит отметить, что если граф
несвязен, то его бонд определим как бонд какой-либо его компоненты, а всякий перешеек графа образует однореберный бонд. Торцевые графы перешейка являются торцевыми графами соответствующего бонда.
Определение: |
Гамильтоновым бондом (англ. hamiltonian bond) называется бонд графа | , торцевыми графами которого являются деревья.
Теорема Гринберга
Теорема (Гринберг): |
Пусть связный граф имеет гамильтонов бонд с торцевыми графами и . Пусть и — число вершин в графов и соответственно, имеющих в степень . Тогда:
|
Доказательство: |
Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: Посчитаем лемме о рукопожатиях внутри их будет , но мы не посчитали ребра прикрепленные и к , и к . Количество таких ребер - количество ребер в бонде , то есть . Отсюда: , то есть количество всех исходящих ребер из . ПоПоэтому: |
Использование теоремы
Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа
, кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы (1) не делится на 3 и, следовательно, гамильтонова бонда в графе не существует. Рисунок 1 иллюстрирует этот простой пример.См. также
Источники информации
- У. Татт. Теория графов. М.: "Мир", 1988. с. 304. ISBN 5-03-001001-7