Теорема Гринберга — различия между версиями
Hazzus (обсуждение | вклад) м (→Базовые определения) |
Hazzus (обсуждение | вклад) м (→Теорема Гринберга) |
||
Строка 53: | Строка 53: | ||
Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: | Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: | ||
<center> <tex> \sum\limits_{n=1}^{\infty} f_n^{X} = |V(X)| = |E(X)| + 1 ~~~ \textbf{(2)} </tex>. </center> | <center> <tex> \sum\limits_{n=1}^{\infty} f_n^{X} = |V(X)| = |E(X)| + 1 ~~~ \textbf{(2)} </tex>. </center> | ||
− | Посчитаем <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} </tex>, то есть количество всех исходящих ребер из <tex>X</tex>. По [[Лемма_о_рукопожатиях | лемме о рукопожатиях]] внутри <tex>X</tex> их будет <tex>2|E(X)|</tex>, но мы не посчитали ребра прикрепленные и к <tex>X</tex>, и к <tex>Y</tex>. Количество таких ребер - количество ребер в бонде <tex>H</tex>, то есть <tex>|E(H)|</tex>. Отсюда: | + | Посчитаем <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} </tex>, то есть количество всех исходящих ребер из <tex>X</tex>. По [[Лемма_о_рукопожатиях | лемме о рукопожатиях]] внутри <tex>X</tex> их будет <tex>2|E(X)|</tex>, но мы не посчитали ребра прикрепленные и к <tex>X</tex>, и к <tex>Y</tex>. Количество таких ребер, по определению бонда {{---}} количество ребер в бонде <tex>H</tex>, то есть <tex>|E(H)|</tex>. Отсюда: |
<center> <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} = |E(H)| + 2|E(X)| ~~~ \textbf{(3)} </tex>. </center> | <center> <tex> \sum\limits_{n=1}^{\infty} n f_n^{X} = |E(H)| + 2|E(X)| ~~~ \textbf{(3)} </tex>. </center> | ||
Поэтому: | Поэтому: |
Версия 01:26, 30 сентября 2018
Содержание
Базовые определения
Определение: |
Подграф (англ. subgraph) исходного графа — граф, содержащий некое подмножество вершин данного графа и некое подмножество инцидентных им рёбер. По отношению к подграфу исходный граф называется суперграфом. |
Определение: |
Порождённый подграф (англ. induced subgraph) — подграф, порождённый множеством рёбер исходного графа. Содержит не обязательно все вершины графа, но эти вершины соединены такими же ребрами, как в графе. |
Определение: |
Разрез графа — множество рёбер | (все рёбра между и ) для произвольного разбиения на два непересекающихся множества вершин и .
Определение: |
Бонд графа — это минимальный (по включению) непустой разрез графа | .
Лемма: |
Разрез связного графа является бондом, если и только если оба графа и связны. |
Доказательство: |
Для удобства примем .. Пусть - бонд. Докажем, что для любого ребра граф связен. Действительно, пусть этот граф несвязен и имеет, скажем, компоненты связности и . Тогда , а из связности графа следует, что . Противоречие с минимальностью . Так как для любого ребра граф связен, оба графа и связны. . Если оба графа и — связны, то добавление любого ребра из даст нам связный подграф графа . Значит, в этом случае разрез минимален по включению. В силу связности этот разрез непуст, то есть, является бондом. |
Определение: |
Подграфы | и из предыдущей леммы называются торцевыми графами.
Также стоит отметить, что если граф
несвязен, то его бонд определим как бонд какой-либо его компоненты, а всякий перешеек графа образует однореберный бонд. Торцевые графы перешейка являются торцевыми графами соответствующего бонда.
Определение: |
Гамильтоновым бондом (англ. hamiltonian bond) называется бонд графа | , торцевыми графами которого являются деревья.
Теорема Гринберга
Теорема (Гринберг): |
Пусть связный граф имеет гамильтонов бонд с торцевыми графами и . Пусть и — число вершин в графов и соответственно, имеющих в степень . Тогда:
|
Доказательство: |
Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: Посчитаем лемме о рукопожатиях внутри их будет , но мы не посчитали ребра прикрепленные и к , и к . Количество таких ребер, по определению бонда — количество ребер в бонде , то есть . Отсюда: , то есть количество всех исходящих ребер из . ПоПоэтому: |
Использование теоремы
Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа
, кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы (1) не делится на 3 и, следовательно, гамильтонова бонда в графе не существует. Рисунок 1 иллюстрирует этот простой пример.См. также
Источники информации
- У. Татт. Теория графов. М.: "Мир", 1988. с. 304. ISBN 5-03-001001-7