Теорема Гринберга — различия между версиями
Hazzus (обсуждение | вклад) (→Базовые определения: - определение рзреза теперь ссылка на интервики) |
Hazzus (обсуждение | вклад) (→Использование теоремы: тире) |
||
Строка 52: | Строка 52: | ||
== Использование теоремы == | == Использование теоремы == | ||
* Сам Гринберг использовал свою теорему для того, чтобы искать негамильтоновы кубические(все вершины имеют степень 3) [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D1%8D%D0%B4%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 полиэдральные графы] с высокой циклической связностью. | * Сам Гринберг использовал свою теорему для того, чтобы искать негамильтоновы кубические(все вершины имеют степень 3) [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D1%8D%D0%B4%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D1%84 полиэдральные графы] с высокой циклической связностью. | ||
− | * Теорема Гринберга - необходимое условие для планарного графа, чтобы граф содержал гамильтонов цикл, основанное на длинах циклов граней. | + | * Теорема Гринберга {{---}} необходимое условие для планарного графа, чтобы граф содержал гамильтонов цикл, основанное на длинах циклов граней. |
* Теорема Гринберга используется также для поиска планарных гипогамильтоноввых графов путём построения графа, в котором все грани имеют число рёбер, сравнимых с 2 по модулю 3. | * Теорема Гринберга используется также для поиска планарных гипогамильтоноввых графов путём построения графа, в котором все грани имеют число рёбер, сравнимых с 2 по модулю 3. | ||
* Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа <tex> G </tex>, кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы '''(1)''' не делится на 3 и, следовательно, гамильтонова бонда в графе <tex> G </tex> не существует. Рисунок '''1''' иллюстрирует этот простой пример. | * Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа <tex> G </tex>, кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы '''(1)''' не делится на 3 и, следовательно, гамильтонова бонда в графе <tex> G </tex> не существует. Рисунок '''1''' иллюстрирует этот простой пример. |
Версия 01:16, 1 октября 2018
Содержание
Базовые определения
Определение: |
Подграф (англ. subgraph) исходного графа — граф, содержащий некое подмножество вершин данного графа и некое подмножество инцидентных им рёбер. По отношению к подграфу исходный граф называется суперграфом. |
Определение: |
Бонд (англ. bond) графа — это минимальный (по включению) непустой разрез графа . |
Лемма: |
Разрез связного графа является бондом, если и только если оба графа и связны. |
Доказательство: |
Для удобства примем .. Пусть - бонд. Докажем, что для любого ребра граф связен. Действительно, пусть этот граф несвязен и имеет, скажем, компоненты связности и . Тогда , а из связности графа следует, что . Противоречие с минимальностью . Так как для любого ребра граф связен, оба графа и связны. . Если оба графа и — связны, то добавление любого ребра из даст нам связный подграф графа . Значит, в этом случае разрез минимален по включению. В силу связности этот разрез непуст, то есть, является бондом. |
Определение: |
Подграфы | и из предыдущей леммы называются торцевыми графами.
Также стоит отметить, что если граф
несвязен, то его бонд определим как бонд какой-либо его компоненты, а всякий перешеек графа образует однореберный бонд. Торцевые графы перешейка являются торцевыми графами соответствующего бонда.
Определение: |
Гамильтоновым бондом (англ. hamiltonian bond) называется бонд графа | , торцевыми графами которого являются деревья.
Теорема Гринберга
Теорема (Гринберг): |
Пусть связный граф имеет гамильтонов бонд с торцевыми графами и . Пусть и — число вершин в графов и соответственно, имеющих в степень . Тогда:
|
Доказательство: |
Так как торцевые графы являются деревьями, то количество их вершин на единицу больше количества ребер: Посчитаем лемме о рукопожатиях внутри их будет , но мы не посчитали ребра прикрепленные и к , и к . Количество таких ребер, по определению бонда — количество ребер в бонде , то есть . Отсюда: , то есть количество всех исходящих ребер из . ПоПоэтому: |
Использование теоремы
- Сам Гринберг использовал свою теорему для того, чтобы искать негамильтоновы кубические(все вершины имеют степень 3) полиэдральные графы с высокой циклической связностью.
- Теорема Гринберга — необходимое условие для планарного графа, чтобы граф содержал гамильтонов цикл, основанное на длинах циклов граней.
- Теорема Гринберга используется также для поиска планарных гипогамильтоноввых графов путём построения графа, в котором все грани имеют число рёбер, сравнимых с 2 по модулю 3.
- Теорему Гринберга можно иногда использовать для доказательства отсутствия гамильтонова бонда в графе. Пусть, например, все вершины связного графа , кроме одной, имеют степени, сравнимые с 2 по модулю 3. Тогда левая часть формулы (1) не делится на 3 и, следовательно, гамильтонова бонда в графе не существует. Рисунок 1 иллюстрирует этот простой пример.
См. также
Источники информации
- У. Татт. Теория графов. М.: "Мир", 1988. с. 304. ISBN 5-03-001001-7
- Д.В. Карпов. Теория графов. c. 301