Использование обхода в глубину для проверки связности — различия между версиями
Kasetkin (обсуждение | вклад) |
Kasetkin (обсуждение | вклад) (→Алгоритм) |
||
Строка 4: | Строка 4: | ||
== Алгоритм == | == Алгоритм == | ||
Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины U и проверять при каждом посещении вершины, не является ли она искомой вершиной V. | Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины U и проверять при каждом посещении вершины, не является ли она искомой вершиной V. | ||
− | Так как в первый момент времени все пути в графе "белые", то если вершина V и была достижима из U, то по [[ | + | Так как в первый момент времени все пути в графе "белые", то если вершина V и была достижима из U, то по [[Лемма о белых путях|Лемме о белых путях]] в какой-то момент времени мы зайдём в вершину V, чтобы её покрасить. Время работы алгоритма O(M + N). |
=== Реализация === | === Реализация === |
Версия 03:44, 14 января 2011
Содержание
Задача
Дан неориентированный граф G и две вершины U и V. Необходимо проверить существует ли путь из вершины U в вершину V по рёбрам графа G.
Алгоритм
Небольшая модификация алгоритма обхода в глубину. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины U и проверять при каждом посещении вершины, не является ли она искомой вершиной V. Так как в первый момент времени все пути в графе "белые", то если вершина V и была достижима из U, то по Лемме о белых путях в какой-то момент времени мы зайдём в вершину V, чтобы её покрасить. Время работы алгоритма O(M + N).
Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах bool dfs(int u) { if(u == t) return true; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) - ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине if(dfs(v)) retrun true; return false; } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные if(dfs(s)) std::out << "Путь из S в T существует"; else std::out << "Пути из S в T нет"; return 0; }
Алгоритм проверки связности ВСЕГО графа G
Заведём счётчик количества вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу перед выходом из процедуры. Запустимся от какой-то вершины нашего графа. По окончании работы процедуры dfs() сравним счётчик с нулём. Если они равны, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали в какой-то вершине графа. Работает алгоритм за O(M + N).
Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах int k = 0;
void dfs(int u) { k--; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) - ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине dfs(v); } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные int k = n; for(int i = 0; i < n; i++) dfs(i); if(k == 0) //вывести, что граф связен else //вывести, что граф несвязен return 0; }