|proof =
Докажем [[Определение матроида|аксиомы независимости ]] для <tex> I_1 </tex>.
1. # <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex> 2. # <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex> <br /><tex>A \in I_1</tex>, значит <tex>\mathcal {9} S, S \in I</tex>, такое, что <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>. 3. # Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), |A| > |B|</tex>. Докажем, что <tex> \mathcal {9} y \in A \setminus B, B \cup \mathcal{f} y \mathcal {g} \in I_1</tex> <br /><tex>A = f(S) \Rightarrow \mathcal {9} S_1 \subset S, A = f(S_1), |S_1| = |A| </tex>. <br /><tex>B = f(T) \Rightarrow \mathcal {9} T_1 \subset T, B = f(T_1), |T_1| = |B| </tex>. <br /><tex>S_1 \in I, T_1 \in I</tex> по второй аксиоме для <tex>M</tex>. <br /><tex> |S_1| > |T_1| </tex>, значит по третьей аксиоме для <tex>M</tex>, <tex>\mathcal {9} x \in S_1 \setminus T_1, T_1 \cup \mathcal{f} x \mathcal {g} \in I</tex>. Следовательно <tex>f(T_1 \cup \mathcal{f} x \mathcal {g}) \in I_1</tex>.<br /><tex>f(T_1 \cup \mathcal{f} x \mathcal {g}) = f(T_1) \cup f(x) = B \cup f(x)</tex>. Значит <tex>\mathcal {9} y = f(x) \in A \setminus B , B \cup \mathcal{f} y \mathcal {g} \in I_1</tex>
}}