Алгоритм построения базы в объединении матроидов — различия между версиями
Vsklamm (обсуждение | вклад) |
Vsklamm (обсуждение | вклад) м (→Алгоритм) |
||
Строка 17: | Строка 17: | ||
<tex>F_i = \{ x \in S \setminus I_i : I_i + x \in \mathcal{I}_i \}</tex>. <tex>F</tex> = <tex>\bigcup\limits_{k=1}^{n}</tex> <tex>F_i</tex> | <tex>F_i = \{ x \in S \setminus I_i : I_i + x \in \mathcal{I}_i \}</tex>. <tex>F</tex> = <tex>\bigcup\limits_{k=1}^{n}</tex> <tex>F_i</tex> | ||
− | Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. | + | Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом [[Граф замен|графе замен]] <tex>D_{M_i}(I_i)</tex> ([[Алгоритм построения базы в объединении матроидов#th_1|следующая теорема]] отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как <tex>I</tex>. |
Тогда нужно найти такой элемент <tex>s \in S \setminus I</tex>, что <tex>I + s</tex> — снова независимо. | Тогда нужно найти такой элемент <tex>s \in S \setminus I</tex>, что <tex>I + s</tex> — снова независимо. | ||
Все наши кандидаты находятся в <tex>S \setminus I</tex>. Если мы найдем путь из <tex>F</tex> в <tex>S \setminus I</tex>, то элемент <tex>s</tex>, которым путь закончился, можно будет добавить в <tex>I</tex>. | Все наши кандидаты находятся в <tex>S \setminus I</tex>. Если мы найдем путь из <tex>F</tex> в <tex>S \setminus I</tex>, то элемент <tex>s</tex>, которым путь закончился, можно будет добавить в <tex>I</tex>. |
Версия 01:15, 23 октября 2018
Задача: |
Даны матроиды | и . Необходимо найти максимальное по мощности независимое множество в объединении и .
Определение: |
Объединение матроидов | = = , где =
Содержание
Алгоритм
Определим граф замен: для каждого построим двудольный ориентированный граф , где , такой что в левой доле находятся вершины из , а в правой — вершины из . Построим ориентированные ребра из в , при условии, что .
Объединим все
в один граф , который будет суперпозицией ребер из этих графов. Пусть для каждого - множество вершин из , которые могут быть добавлены в таким образом, что независимое множество в . Или формально:. =
Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом графе замен (следующая теорема отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как . Тогда нужно найти такой элемент , что — снова независимо. Все наши кандидаты находятся в . Если мы найдем путь из в , то элемент , которым путь закончился, можно будет добавить в . То есть шаг жадного алгоритма заключается в создании нового и поиске такого пути.
Псевдокод
граф замен if= for to построить
Теорема: |
Для любого имеем существует ориентированный путь из в по ребрам . |
Доказательство: |
Пусть существует путь из в и — самый короткий такой путь. Запишем его вершины как { }. , так что не умаляя общности можно сказать, что . Для каждого определим множество вершин { }, где пробегает от до . Положим, что , для всех положим . Ясно, что . Для того, чтобы показать независимость в объединении матроидов нужно показать, что для всех . Заметим, что так как мы выбирали путь таким, что он будет наименьшим, для каждого существует единственное паросочетание между элементами, которые мы добавляли и удаляли, чтобы сконструировать . Так как паросочетание единственно, . Аналогично , значит . Следовательно независимо в объединении матроидов.
Пусть нет пути из в по ребрам . Тогда пусть существует множество , состоящее из вершин , из которого мы можем достичь : по допущению . Утверждается, что для всех (что означает, что — максимальное подмножество , независимое в ).Предположим, что это не так. , это возможно только если . Значит существует такой , для которого . Но (по предположению вначале доказательства), значит . Из этого следует, что содержит единственный цикл. Значит существует , такой что . Получается, что — ребро в и оно содержит этот , что противоречит тому как был выбран . Следовательно для всех нам известно : . У нас есть и . Из определния функции ранга объединения матроидов имеем :
и значит — противоречие. |
См. также
Источники информации
Michel X. Goemans. Advanced Combinatorial Optimization. Lecture 13