Объединение матроидов, проверка множества на независимость — различия между версиями
(→Доказательство того, что обединение матроидов является матродидом) |
|||
Строка 46: | Строка 46: | ||
|proof = | |proof = | ||
− | Докажем | + | Докажем аксиомы независимости для <tex> I_1 </tex>. |
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex> | # <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex> | ||
Строка 59: | Строка 59: | ||
|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \mathcal {f} 1 \mathcal {g}) \rightarrow x </tex>, <tex>f(x \times \mathcal {f} 2 \mathcal {g}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>. | |proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \mathcal {f} 1 \mathcal {g}) \rightarrow x </tex>, <tex>f(x \times \mathcal {f} 2 \mathcal {g}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>. | ||
}} | }} | ||
− | |||
==См. также== | ==См. также== |
Версия 09:47, 12 ноября 2018
Определение: |
Пусть аксиомам независимости, следовательно, — матроид, для которого служит набором независимых множеств. Этот матроид называется объединением матроидов (англ. matroid union) и , и обозначается | и — два матроида на множестве элементов с наборами независимых множеств и . Положим . Множество удовлетворяет
Обычно термин «объединение» применяется, когда носители прямой суммой матроидов.
в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого и не перестанут быть матроидами. Если в и носители непересекающиеся, то это будет являтьсяВерны следующие утверждения про объединение матроидов:
- Операция объединения матроидов ассоциативна, следовательно, можно говорить об объединении нескольких матроидов.
- В отличие от пересечения матроидов, объединение двух конечных матроидов (англ. finite matroid) всегда является матроидом, однако объединение двух бесконечных матроидов (англ. infinite matroid) не обязательно будет им.
- Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечением матроидов.
Содержание
Проверка множества на независимость
Задача: |
Дан матроид | . Необходимо проверить, является ли некоторое множество независимым, то есть, лежит ли оно в .
Для решения этой задачи преобразуем каждый элемент множества в матроиде в , а каждый элемент множества в матроиде в . Мы получили два матроида и .
Определим функцию
: , при этом , а для множества выполняется . Тогда функция на носителях матроидов и будет являться естественным отображением , где .Затем определим два матроида, которые нам далее понадобятся:
- — прямая сумма двух матроидов (носители матроидов и при пересечении будут давать пустое множество).
- — в данном случае будет содержать такие независимые множества, что мощность любого множества из будет равна мощности множества, получаемого функцией над , то есть не будет содержать одновременно и .
Теперь перейдём к нашей задаче.
Множество ранговая функция . Можно заметить, что в матроиде выполняется . Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов и . С помощью алгоритма построения базы в пересечении матроидов найдем размер максимального подмножества в пересечении наборов независимых множеств матроидов.
является независимым, еслиДоказательство того, что обединение матроидов является матродидом
Определение: |
и — матроиды. Тогда . |
Лемма: |
— матроид, . Тогда является матроидом. |
Доказательство: |
Докажем аксиомы независимости для .
|
Теорема: |
Объединение матроидов является матроидом. |
Доказательство: |
Рассмотрим матроиды леммы знаем, что является матроидом. Пусть , такая, что , . Тогда по лемме — матроид, в котором независимым множествам соответствуют объединения независимых множеств в и . То есть . | и из определения объединения матроидов. Из
См. также
Источники информации
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. — Лекции по теории графов
- Chandra Chekuri — Combinatorial Optimization
- Michel X. Goemans — Advanced Combinatorial Optimization
- Wikipedia — Matroid