286
правок
Изменения
Нет описания правки
Для вершины степени <tex>5</tex> аналогичное утверждение неверно, хотя оно и присутствовало в одном из первых ошибочных доказательств.
Если нам удастся найти какую-то неизбежную конфигурацию и доказать, что с ней граф <tex>G</tex> все равно <tex>4</tex>-раскрашиваем, доказательство будет завершено. Основным методом для нахождения такого набора является [https://en.wikipedia.org/wiki/Discharging_method_(discrete_mathematics) метод разгрузки].
{{Утверждение
|statement=В планарном графе есть вершина степени не больше <tex>4</tex> или конфигурация, состоящая из <tex>2</tex> вершин степени <tex>5</tex> или из вершины степени <tex>5</tex> и степени <tex>6</tex>
|proof=Присвоим каждой вершине Зададим функцию <tex>f(v) = 6-deg(v) ~ \forall v\in V</tex> некую величину {{---}} '''груз''' и назовем <tex>=6-degf(v)</tex> грузом вершины <tex>v</tex>. Предположим что наше утверждение неверно. Следовательно, в графе нет вершин степени не больше <tex>4</tex>. Тогда положительный груз есть только у вершин степени <tex>5</tex> (и он равен единице). У вершин степени <tex>6</tex> груз <tex>=0</tex>нулевой, а у всех остальных он вершин {{---}} отрицательный. По первому доказанному выше утверждению мы знаем, что сумма грузов по всем вершинам <tex>\sum\limits_{v \in V}f(v) =12 > 0</tex>. Значит вершины степени <tex>5</tex> должны компенсировать все отрицательные грузы других вершин. Пусть каждая такая вершина отдает по <tex>\dfrac{1}{5}</tex> своего груза соседям. Тогда у всех вершин степени <tex>5</tex> и <tex>6</tex> груз останется равен <tex>0</tex> (помним что вершины степени <tex>6</tex> не смежны с вершинами степени <tex>5</tex> по предположению). Рассмотрим все остальные вершины. Так как мы проводим доказательство для триангулированных графов, то у вершины степени <tex>i</tex> не может быть больше чем <tex>\bigg\lfloor\dfrac{i}{2}\bigg\rfloor</tex> соседей степени <tex>5</tex>. Однако <tex>(6 - i) + \dfrac{1}{5}\bigg\lfloor\dfrac{i}{2}\bigg\rfloor < 0</tex> для <tex>i \geqslant 7</tex>, следовательно, сумма грузов отрицательна. Получено противоречие.
}}