Мультиплексор и демультиплексор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Модуль памяти)
(Применение мультиплексора и демультиплексора в реальной жизни)
Строка 123: Строка 123:
  
 
==Применение мультиплексора и демультиплексора в реальной жизни==
 
==Применение мультиплексора и демультиплексора в реальной жизни==
 +
 +
Мультиплексоры и демультиплексоры часто используются в схемотехнике, т.к. с помощью минимального количества проводов позволяют передавать сигнал большему количеству объектов. В качестве примера можно взять использование мультиплексоров и демультиплексоров телефонными компаниями в начале <tex>XX</tex> века, т.к. позволяли передавать сигнал большому количеству абонентом используя минимальное число проводов.
  
 
===Модуль памяти===
 
===Модуль памяти===

Версия 22:01, 10 декабря 2018

Эта статья находится в разработке!


Определение:
Мультиплексор (англ. multiplexer, или mux) — логическая схема, имеющая [math]2^n + n[/math] входов [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math], [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math] и один выход [math]z[/math], на который подаётся значение на входе [math]x_i[/math], где [math]i[/math] — число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math].


Определение:
Демультиплексор (англ. demultiplexer, или demux) — логическая схема, имеющая [math]n+1[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], [math]x[/math] и [math]2^n[/math] выходов [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math]. На все выходы подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся значение на входе [math]y[/math], где [math]i[/math] — число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math].


Принцип работы мультиплексора

[math]2[/math]—to—[math]1[/math] мультиплексор
[math]4[/math]—to—[math]1[/math] мультиплексор

Мультиплексор 2-to-1

Рассмотрим мультиплексор [math]2[/math]-to-[math]1[/math] (это значит, что есть всего два входа [math]x_0[/math] и [math]x_1[/math], значения которых могут подаваться на вход [math]z[/math]). Переберём всевозможные варианты значений на входах. Если на [math]s[/math] подавать [math]0[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_0[/math], т.е. в данном случае значение на входе [math]x_1[/math] нас не интересует. Аналогично, если на вход [math]s[/math] подавать [math]1[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s[/math] [math]x_0[/math] [math]x_1[/math] [math]z[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]?[/math] [math]\textbf{0}[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]\textbf{1}[/math]
[math]\textbf{1}[/math] [math]?[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math]
[math]\textbf{1}[/math] [math]?[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math]

Мультиплексор 4-to-1

Также рассмотрим мультиплексор [math]4[/math]-to-[math]1[/math] (это значит, что есть четыре входа [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] и [math]x_3[/math], значения которых могут подаваться на выход [math]z[/math]). Также переберём всевозможные варианты значений на входах. Тут уже [math]2[/math] входа [math]s_0[/math] и [math]s_1[/math], которые определяют, значение какого из входов [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] или [math]x_3[/math] будет подаваться на выход [math]z[/math]. Если [math]s_0 = s_1 = 0[/math], то на выход [math]z[/math] будет подаваться значение входа [math]x_0[/math], если [math]s_0 = 1[/math] и [math]s_1 = 0[/math] — то значение [math]x_1[/math], если [math]s_0 = 0[/math] и [math]s_1 = 1[/math] — то значение [math]x_2[/math], в противном случае — значение [math]x_3[/math]. Для более лучшее понимания рекомендуется обратиться к таблице истинности.

[math]s_0[/math] [math]s_1[/math] [math]x_0[/math] [math]x_1[/math] [math]x_2[/math] [math]x_3[/math] [math]z[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]?[/math] [math]?[/math] [math]?[/math] [math]\textbf{0}[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]?[/math] [math]\textbf{1}[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]?[/math] [math]\textbf{0}[/math] [math]?[/math] [math]?[/math] [math]\textbf{0}[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]?[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]\textbf{1}[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]\textbf{0}[/math] [math]?[/math] [math]\textbf{0}[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]\textbf{1}[/math] [math]?[/math] [math]\textbf{1}[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]?[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]?[/math] [math]?[/math] [math]?[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math]

Логическая схема мультиплексора

Заметим, что дешифратор имеет [math]n[/math] входов и [math]2^n[/math] выходов, причём на все выходы дешифратора подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся [math]1[/math], где [math]i[/math] — число, которое кодируется его входами.

Тогда давайте построим дешифратор [math]n[/math]-to-[math]2^n[/math] (это значит, что у дешифратора имеется [math]n[/math] входов и [math]2^n[/math] выходов), на вход ему подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math], а потом с помощью гейта [math]AND[/math] соединим выход [math]y_i[/math] дешифратора с входом [math]x_i[/math] мультиплексора, потом соединим все гейты с выходом [math]z[/math]. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math] [math]s_{n-1}[/math] кодируют вход [math]i[/math], то это значит, что только [math]y_i[/math] выход дешифратора будет иметь [math]1[/math], тогда как на остальных выходах будет [math]0[/math], значит, что значения на входах [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{i-1}[/math], [math]x_{i+1}[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math] на ответ никак повлиять не могут. Теперь, если на входе [math]x_i[/math] было [math]0[/math], то на выходе [math]z[/math] будет [math]0[/math], если же на входе [math]x_i[/math] был [math]1[/math], то на выходе [math]z[/math] будет [math]1[/math].

Логическая схема мультиплексора [math]8[/math]-to-[math]1[/math]

Принцип работы демультиплексора

[math]1[/math]-to-[math]2[/math] демультиплексор
[math]1[/math]-to-[math]4[/math] демультиплексор

Демультиплексор 1-to-2

Рассмотрим демультиплексор [math]1[/math]-to-[math]2[/math] (это значит, что у демультиплексора два выхода). Если на вход [math]s[/math] подать значение [math]0[/math], то на выход [math]z_0[/math] будет подаваться то же значение, которое подаётся на вход [math]y[/math], а на выход [math]z_1[/math] будет подаваться [math]0[/math]. Если же на вход [math]s[/math] подать значение [math]1[/math], то на выход [math]z_0[/math] будет подаваться значение [math]0[/math], а на выход [math]z_1[/math] то же значение, которое будет подаваться на вход [math]y[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s[/math] [math]y[/math] [math]z_0[/math] [math]z_1[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]0[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]\textbf{0}[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]\textbf{1}[/math]

Демультиплексор 1-to-4

Также рассмотрим демультиплексор [math]1[/math]-to-[math]4[/math] (это значит, что у демультиплексора четыре выхода). Теперь у нас уже есть два входа [math]s_0[/math] и [math]s_1[/math], которые определяют, на какой из выходов [math]z_0[/math], [math]z_1[/math], [math]z_2[/math] или [math]z_3[/math] будет подаваться значение [math]y[/math], тогда как на остальные выходы будет подаваться [math]0[/math]. В случае, когда [math]s_0 = s_1 = 0[/math], то на выход [math]z_0[/math] будет подаваться значение на входе [math]y[/math], тогда как на [math]z_1[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math]. Если же [math]s_0 = 1[/math] и [math]s_1 = 0[/math], то на выходы [math]z_0[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math], а на выход [math]z_1[/math] будет подаваться то же, что подаётся на вход [math]y[/math]. Аналогично разбираются случаи [math]s_0 = 0[/math], [math]s_1 = 1[/math] и [math]s_0 = s_1 = 1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.

[math]s_0[/math] [math]s_1[/math] [math]y[/math] [math]z_0[/math] [math]z_1[/math] [math]z_2[/math] [math]z_3[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]\textbf{0}[/math] [math]0[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]0[/math] [math]\textbf{0}[/math] [math]0[/math]
[math]\textbf{0}[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]\textbf{1}[/math] [math]0[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]\textbf{0}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]\textbf{0}[/math]
[math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]\textbf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]\textbf{1}[/math]

Логическая схема демультиплексора

Построим схему, аналогичную схеме мультиплексора.

Тогда давайте построим дешифратор, [math]n[/math]-to-[math]2^n[/math], на входы дешифратора подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора мы обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math]. Поставим [math]2^n[/math] гейтов [math]AND[/math] и соединим каждый из выходов дешифратора [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math] со входом [math]x[/math] с помощью гейта [math]AND[/math], потом соединим соответственные гейты с выходами [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math], причем мы соединим гейт [math]AND[/math] с выходом [math]z_i[/math], если на этот гейт приходится выход дешифратора [math]y_i[/math].

Логическая схема демультиплексора [math]1[/math]-to-[math]8[/math]

Применение мультиплексора и демультиплексора в реальной жизни

Мультиплексоры и демультиплексоры часто используются в схемотехнике, т.к. с помощью минимального количества проводов позволяют передавать сигнал большему количеству объектов. В качестве примера можно взять использование мультиплексоров и демультиплексоров телефонными компаниями в начале [math]XX[/math] века, т.к. позволяли передавать сигнал большому количеству абонентом используя минимальное число проводов.

Модуль памяти

Допустим, что нам нужно реализовать модуль памяти на 8 бит. Обозначим эти биты как [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_7[/math]. Также допустим, что у нас есть следующие входы: [math]a_0[/math], [math]a_1[/math], [math]a_2[/math], которые задают номер бита, который следует обработать, также есть вход [math]R/W[/math], значение на котором равно [math]0[/math], если надо прочитать значение [math]i[/math]-го бита, где [math]i[/math] - число, которое кодируется входами [math]A_0[/math], [math]A_1[/math], [math]A_2[/math] и вывести его на выход [math]Q[/math], или [math]1[/math], если надо записать в [math]i[/math]-ый бит значение на входе [math]D[/math]. Также есть вход [math]C[/math] - провод синхронизации.

Давайте для хранения значения в [math]i[/math]-ом бите будем использовать D-триггер. Если на входе [math]c[/math] записано значение [math]0[/math], то нам не важно, что находится на выходе [math]Q[/math], поэтому эту ситуацию можно свести к ситуации, когда на [math]C[/math] подано [math]1[/math], а на [math]R/W[/math] - [math]0[/math]. Теперь осталось реализовать операции чтения и записи. Подадим на входы [math]S_0[/math], [math]S_1[/math], [math]S_2[/math] демультиплексора значения на входах [math]A_0[/math], [math]A_1[/math], [math]A_2[/math], а на вход демультиплексора [math]Y[/math] подадим на вход значение гейта [math]AND[/math], которому на вход подаются входы [math]R/W[/math] и [math]C[/math]. Тогда если либо на входе [math]R/W[/math] [math]0[/math], либо на входе [math]C[/math] подать [math]0[/math] то на выходе демультиплексора будут все [math]0[/math]. Если же и на [math]R/W[/math] и на [math]C[/math] подать [math]1[/math], то на выходе [math]Z_i[/math] будет[math]1[/math], а на остальных - [math]0[/math], где [math]i[/math] - число, которое кодируется входами [math]A_0[/math], [math]A_1[/math], [math]A_2[/math]. Соединим выходы [math]Z_0[/math], [math]Z_1[/math], [math]\ldots[/math], [math]Z_7[/math] демультиплексора к входам [math]C[/math] D-триггеров, причём мы соединим выход [math]Z_i[/math] с триггером, который хранит значение [math]i[/math]-го бита. Подадим значение на входе [math]D[/math] элементы памяти на оставшиеся свободными входы триггеров. Если же [math]R/W = 0[/math] или [math]C = 0[/math], то все триггеры вернут значения, которые в них записаны. Если же [math]R/W = 1[/math] и [math]C = 1[/math], то только в [math]i[/math]-ый триггер запишется значение на входе [math]D[/math], тогда как на остальные триггеры на соответствующие им входы [math]C[/math] будут подаваться [math]0[/math]. Потом соединим [math]i[/math]-ый триггер с [math]X_i[/math] входом мультиплексора, также подадим значения на входах [math]A_0[/math], [math]A_1[/math], [math]A_2[/math] на входы [math]S_0[/math], [math]S_1[/math], [math]S_2[/math] мультиплексора. Тогда мультиплексор на выход [math]Z[/math] выдаст значение, которое подаётся на [math]X_i[/math]-ый вход, причём на [math]Q[/math] всегда будет подаваться значение на [math]i[/math]-ом бите независимо от значения на входе [math]R/W[/math], т.к. если был запрос "Записать в [math]i[/math]-ый бит значение [math]D[/math], то неважно, что будет на выходе [math]Q[/math]".

Логическая схема модуля памяти на 8 бит

См. также

Источники информации