Объединение матроидов, проверка множества на независимость — различия между версиями
(→Доказательство того, что обединение матроидов является матродидом) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Пусть <tex>M_1 = \langle X, I_1 \rangle </tex> и <tex> M_2 = \langle X, I_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>I_1</tex> и <tex>I_2</tex>. Положим <tex> I = \ | + | Пусть <tex>M_1 = \langle X, I_1 \rangle </tex> и <tex> M_2 = \langle X, I_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>I_1</tex> и <tex>I_2</tex>. Положим <tex> I = \{ A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \} </tex>. Множество <tex>I</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, I \rangle </tex> {{---}} матроид, для которого <tex>I</tex> служит набором независимых множеств. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex>M = M_1 \cup M_2 </tex> |
}} | }} | ||
Обычно термин «объединение» применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, то это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]]. | Обычно термин «объединение» применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, то это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]]. |
Версия 17:42, 11 декабря 2018
Определение: |
Пусть аксиомам независимости, следовательно, — матроид, для которого служит набором независимых множеств. Этот матроид называется объединением матроидов (англ. matroid union) и , и обозначается | и — два матроида на множестве элементов с наборами независимых множеств и . Положим . Множество удовлетворяет
Обычно термин «объединение» применяется, когда носители прямой суммой матроидов.
в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого и не перестанут быть матроидами. Если в и носители непересекающиеся, то это будет являтьсяВерны следующие утверждения про объединение матроидов:
- Операция объединения матроидов ассоциативна, следовательно, можно говорить об объединении нескольких матроидов.
- В отличие от пересечения матроидов, объединение двух конечных матроидов (англ. finite matroid) всегда является матроидом, однако объединение двух бесконечных матроидов (англ. infinite matroid) не обязательно будет им.
- Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечением матроидов.
Содержание
Проверка множества на независимость
Задача: |
Дан матроид | . Необходимо проверить, является ли некоторое множество независимым, то есть, лежит ли оно в .
Для решения этой задачи преобразуем каждый элемент множества в матроиде в , а каждый элемент множества в матроиде в . Мы получили два матроида и .
Определим функцию
: , при этом , а для множества выполняется . Тогда функция на носителях матроидов и будет являться естественным отображением , где .Затем определим два матроида, которые нам далее понадобятся:
- — прямая сумма двух матроидов (носители матроидов и при пересечении будут давать пустое множество).
- — в данном случае будет содержать такие независимые множества, что мощность любого множества из будет равна мощности множества, получаемого функцией над , то есть не будет содержать одновременно и .
Теперь перейдём к нашей задаче.
Множество ранговая функция . Можно заметить, что в матроиде выполняется . Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов и . С помощью алгоритма построения базы в пересечении матроидов найдем размер максимального подмножества в пересечении наборов независимых множеств матроидов.
является независимым, еслиДоказательство того, что обединение матроидов является матродидом
Определение: |
и — матроиды. Тогда . |
Лемма: |
— матроид, . Тогда является матроидом. |
Доказательство: |
Докажем аксиомы независимости для .
|
Теорема: |
Объединение матроидов является матроидом. |
Доказательство: |
Рассмотрим матроиды леммы знаем, что является матроидом. Пусть , такая, что , . Тогда по лемме — матроид, в котором независимым множествам соответствуют объединения независимых множеств в и . То есть . | и из определения объединения матроидов. Из
См. также
Источники информации
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. — Лекции по теории графов
- Chandra Chekuri — Combinatorial Optimization
- Michel X. Goemans — Advanced Combinatorial Optimization
- Wikipedia — Matroid