Алгоритм построения базы в объединении матроидов — различия между версиями
Vsklamm (обсуждение | вклад) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Vsklamm (обсуждение | вклад) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 14: | Строка 14: | ||
Пусть <tex>I_i \in \mathcal{I}_i</tex>, для <tex>i = 1\ldots k</tex> с <tex>I_i \cap I_j = \emptyset</tex>, если <tex>i \neq j</tex>. Определим [[Граф замен|граф замен]]: для каждого <tex>M_i</tex> построим [[Основные определения теории графов#defBiparateGraph|двудольный ориентированный граф]] <tex>D_{M_i}(I_i)</tex> так, что в левой доле находятся вершины из <tex>I_i</tex>, а в правой — вершины из <tex>S \setminus I_i</tex>. Построим ориентированные ребра из <tex>y \in I_i</tex> в <tex>x \in S \setminus I_i</tex>, при условии, что <tex>(I_i \setminus y) \cup x \in \mathcal{I}_i</tex>. | Пусть <tex>I_i \in \mathcal{I}_i</tex>, для <tex>i = 1\ldots k</tex> с <tex>I_i \cap I_j = \emptyset</tex>, если <tex>i \neq j</tex>. Определим [[Граф замен|граф замен]]: для каждого <tex>M_i</tex> построим [[Основные определения теории графов#defBiparateGraph|двудольный ориентированный граф]] <tex>D_{M_i}(I_i)</tex> так, что в левой доле находятся вершины из <tex>I_i</tex>, а в правой — вершины из <tex>S \setminus I_i</tex>. Построим ориентированные ребра из <tex>y \in I_i</tex> в <tex>x \in S \setminus I_i</tex>, при условии, что <tex>(I_i \setminus y) \cup x \in \mathcal{I}_i</tex>. | ||
− | Объединим все <tex>D_{M_i}(I_i)</tex> в один граф <tex>D</tex>, который будет суперпозицией ребер из этих графов. Пусть для каждого <tex>i:</tex> <tex>F_i</tex> {{---}} множество элементов <tex>s \notin I_i</tex> с <tex>I_i \cup {s} \in \mathcal{I}_i</tex>. Определим <tex>I = I_1 \cup \ldots \cup I_k</tex> | + | Объединим все <tex>D_{M_i}(I_i)</tex> в один граф <tex>D</tex>, который будет суперпозицией ребер из этих графов. Пусть для каждого <tex>i:</tex> <tex>F_i</tex> {{---}} множество элементов <tex>s \notin I_i</tex> с <tex>I_i \cup {s} \in \mathcal{I}_i</tex>. Определим <tex>I = I_1 \cup \ldots \cup I_k</tex>, <tex>F = F_1 \cup \ldots \cup F_k</tex> и <tex> \mathcal{I} = \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k</tex>. |
− | |||
− | |||
Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом графе замен <tex>D_{M_i}(I_i)</tex> ([[Алгоритм построения базы в объединении матроидов#th_1|следующая теорема]] отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как <tex>I</tex>. | Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом графе замен <tex>D_{M_i}(I_i)</tex> ([[Алгоритм построения базы в объединении матроидов#th_1|следующая теорема]] отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как <tex>I</tex>. |
Версия 21:12, 12 декабря 2018
Задача: |
Даны матроиды . Необходимо найти максимальное по мощности независимое множество в объединении . |
Определение: |
Объединение матроидов (англ. matroid union) | , где
Содержание
Алгоритм
Эта задача сводится к пересечению матроидов, однако есть другой способ её решить. Пусть , для с , если . Определим граф замен: для каждого построим двудольный ориентированный граф так, что в левой доле находятся вершины из , а в правой — вершины из . Построим ориентированные ребра из в , при условии, что .
Объединим все
в один граф , который будет суперпозицией ребер из этих графов. Пусть для каждого — множество элементов с . Определим , и .Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом графе замен следующая теорема отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как . Тогда нужно найти такой элемент , что — снова независимо. Все наши кандидаты находятся в . Если мы найдем путь из в , то элемент , которым путь закончился, можно будет добавить в . То есть шаг жадного алгоритма заключается в создании нового и поиске такого пути.
(Псевдокод
граф замен if= for to построить
Теорема: |
Для любого имеем существует ориентированный путь из в по ребрам . |
Доказательство: |
Пусть существует путь из в и — самый короткий такой путь. Запишем его вершины как { }. , так что не умаляя общности можно сказать, что . Для каждого определим множество вершин { }, где пробегает от до . Положим, что , для всех положим . Ясно, что . Для того, чтобы показать независимость в объединении матроидов нужно показать, что для всех . Заметим, что так как мы выбирали путь таким, что он будет наименьшим, для каждого существует единственное паросочетание между элементами, которые мы добавляли и удаляли, чтобы сконструировать . Так как паросочетание единственно, . Аналогично , значит . Следовательно независимо в объединении матроидов.
Пусть нет пути из в по ребрам . Тогда пусть существует множество , состоящее из вершин , из которого мы можем достичь : по допущению . Утверждается, что для всех (что означает, что — максимальное подмножество , независимое в ).Предположим, что это не так. ранга объединения матроидов имеем : , это возможно только если . Значит существует такой , для которого . Но (по предположению вначале доказательства), значит . Из этого следует, что содержит единственный цикл. Значит существует , такой что . Получается, что — ребро в и оно содержит этот , что противоречит тому как был выбран . Следовательно для всех нам известно : . У нас есть и . Из определния функции
и значит — противоречие. |
См. также
Источники информации
Michel X. Goemans. Advanced Combinatorial Optimization. Lecture 13