|
|
Строка 128: |
Строка 128: |
| В качестве примера можно рассмотреть использование мультиплексоров для разделения на временные слоты и предоставления каждому объекту логической цепи свой слот, во время которого можно обмениваться данными с другими объектами. Такой способ позволяет использовать как можно меньше проводов для соединения объектов между собою. Такой принцип применяется при построении телефонных станций, которые соединяются с помощью одного провода, а для обеспечения помехоустойчивой связи используются временные слоты, в которые только одна из станций может обмениваться данными с остальными. | | В качестве примера можно рассмотреть использование мультиплексоров для разделения на временные слоты и предоставления каждому объекту логической цепи свой слот, во время которого можно обмениваться данными с другими объектами. Такой способ позволяет использовать как можно меньше проводов для соединения объектов между собою. Такой принцип применяется при построении телефонных станций, которые соединяются с помощью одного провода, а для обеспечения помехоустойчивой связи используются временные слоты, в которые только одна из станций может обмениваться данными с остальными. |
| | | |
− | Также мультиплексоры и демультиплексоры используются в современных телефонах для обеспечения генерации сигналов в голосовые сообщения, поскольку позволяют с помощью малого (порядка 30 входов) воспроизводить любой сигнал с частотой, которую может услышать человеческое ухо. | + | Также мультиплексоры и демультиплексоры используются в современных телефонах для обеспечения генерации сигналов в голосовые сообщения, поскольку позволяют с помощью малого (порядка <tex>30</tex> входов) воспроизводить любой сигнал с частотой, которую может услышать человеческое ухо. |
− |
| |
− | ===Модуль памяти===
| |
− | | |
− | Также с помощью мультиплексоров и демультиплексоров можно построить логику некоторых компонентов компьютера, в том числе и можно построить схему модуля памяти с использованием мультиплексора и демультиплексора.
| |
− | | |
− | В качестве примера рассмотрим модуль памяти на 8 бит. Для того, чтобы модуль памяти мог обрабатывать запросы, есть управляющие входы <tex>A_0</tex>, <tex>A_1</tex>, <tex>A_2</tex>, которые кодируют номер бита, к которому делается запрос. Существует два типа запросов:
| |
− | * Прочитать значение, записанное в <tex>i</tex>-ом бите. В этом случае на вход <tex>R/W</tex> подаётся <tex>0</tex>.
| |
− | * Записать в <tex>i</tex>-ый бит значение на входе <tex>D</tex>. В этом случае на вход <tex>R/W</tex> подаётся <tex>1</tex>.
| |
− | | |
− | Также для корректной работы модуля памяти используется провод синхронизации <tex>C</tex>.
| |
− | | |
− | На рисунке представлена схема такой памяти. Для хранения значений в битах используются [[Триггеры#D-триггер|<tex>D</tex>-триггеры]]. Рассмотрим схему подробнее. Если на входе <tex>C</tex> записано значение <tex>0</tex>, то нам не важно, что находится на выходе <tex>Q</tex>, поэтому эту ситуацию можно свести к ситуации, когда на <tex>C</tex> подано <tex>1</tex>, а на <tex>R/W</tex> — <tex>0</tex>. Поймём, как реализованы операции чтения и записи. Существует демультиплексор <tex>3</tex>-to-<tex>8</tex>, которому на вход <tex>Y</tex> подаётся результат конъюнкции входов <tex>R/W</tex> и <tex>C</tex>, а на входы <tex>S_0</tex>, <tex>S_1</tex>, <tex>S_2</tex> — значения на входах <tex>A_0</tex>, <tex>A_1</tex>, <tex>A_2</tex>. Пусть число <tex>i</tex> кодируется входами <tex>A_0</tex>, <tex>A_1</tex>, <tex>A_2</tex>. Тогда на все выходы демультиплексора, кроме выхода <tex>Z_i</tex> будет подаваться <tex>0</tex>, а на выход <tex>Z_i</tex> — значение на входе <tex>Y</tex>. Очевидно, что операция чтения никак не изменяет значение битов, в то время как запись меняет их значения, поэтому можно считать, что модуль памяти всегда возвращает значение на <tex>i</tex>-ом бите, кроме случаев, когда <tex>C = R/W = 1</tex>. Подадим все выходы демультиплексора на соответствующие им входы <tex>C</tex> <tex>D</tex>-триггеров. Оставшиеся свободными входы триггеров соединим со входом <tex>D</tex> модуля памяти. Тогда все триггеры, возможно, кроме <tex>i</tex>-го триггера будут только возвращать значения, записанные в них, и только <tex>i</tex>-ый триггер поменяет своё значение в случае, если <tex>C = R/W = 1</tex>. Также есть мультиплексор <tex>8</tex>-to-<tex>1</tex>, которому на входы <tex>X_0</tex>, <tex>X_1</tex>, <tex>\ldots</tex>, <tex>X_7</tex> подают значения соответственных триггеров, а на входы <tex>S_0</tex>, <tex>S_1</tex>, <tex>S_2</tex> подают значения на входах <tex>A_0</tex>, <tex>A_1</tex>, <tex>A_2</tex>. Тогда мультиплексор всегда возвращает значение, хранящееся в <tex>i</tex>-ом бите. Очевидно, что на любой запрос чтения значения в <tex>i</tex>-ом бите модуль памяти возвращает то, что нужно, а что схема возвращает на запрос записи неважно.
| |
− | | |
− | Однако, такая схема редко используется в реальных электронно-вычислительных машинах, поскольку иногда требуется делать очень много ячеек памяти, а сделать много таких модулей бывает проблематично из-за того, что требуется использования большого количества проводов, а также такая схема будет потреблять большое количество энергии, поэтому чаще используют матричную память, поскольку она позволяет с использованием меньшее количества проводов управлять большим количеством ячеек, а также она занимает меньше места.
| |
| | | |
| + | Огромную роль они играют также и в производстве компьютеров. |
| {| | | {| |
− | |[[Файл:8bitmemory.png|thumb|600px|Логическая схема модуля памяти на 8 бит]] | + | |[[Файл:8bitmemory.png|thumb|600px|Логическая схема модуля памяти на <tex>8</tex> бит]] |
| |} | | |} |
| | | |
Эта статья находится в разработке!
Определение: |
Мультиплексор (англ. multiplexer, или mux) — логическая схема, имеющая [math]2^n + n[/math] входов [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math], [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math] и один выход [math]z[/math], на который подаётся значение на входе [math]x_i[/math], где [math]i[/math] — число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math]. |
Определение: |
Демультиплексор (англ. demultiplexer, или demux) — логическая схема, имеющая [math]n+1[/math] входов [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], [math]x[/math] и [math]2^n[/math] выходов [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math]. На все выходы подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся значение на входе [math]y[/math], где [math]i[/math] — число, которое кодируется входами [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math]. |
Принцип работы мультиплексора
[math]2[/math]—to—
[math]1[/math] мультиплексор
[math]4[/math]—to—
[math]1[/math] мультиплексор
Мультиплексор 2-to-1
Рассмотрим мультиплексор [math]2[/math]-to-[math]1[/math] (это значит, что есть всего два входа [math]x_0[/math] и [math]x_1[/math], значения которых могут подаваться на вход [math]z[/math]). Переберём всевозможные варианты значений на входах. Если на [math]s[/math] подавать [math]0[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_0[/math], т.е. в данном случае значение на входе [math]x_1[/math] нас не интересует. Аналогично, если на вход [math]s[/math] подавать [math]1[/math], то на выход [math]z[/math] будет подаваться то же значение, которое подаётся на вход [math]x_1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.
[math]s[/math] |
[math]x_0[/math] |
[math]x_1[/math] |
[math]z[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]\textbf{1}[/math]
|
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math]
|
Мультиплексор 4-to-1
Также рассмотрим мультиплексор [math]4[/math]-to-[math]1[/math] (это значит, что есть четыре входа [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] и [math]x_3[/math], значения которых могут подаваться на выход [math]z[/math]). Также переберём всевозможные варианты значений на входах. Тут уже [math]2[/math] входа [math]s_0[/math] и [math]s_1[/math], которые определяют, значение какого из входов [math]x_0[/math], [math]x_1[/math], [math]x_2[/math] или [math]x_3[/math] будет подаваться на выход [math]z[/math]. Если [math]s_0 = s_1 = 0[/math], то на выход [math]z[/math] будет подаваться значение входа [math]x_0[/math], если [math]s_0 = 1[/math] и [math]s_1 = 0[/math] — то значение [math]x_1[/math], если [math]s_0 = 0[/math] и [math]s_1 = 1[/math] — то значение [math]x_2[/math], в противном случае — значение [math]x_3[/math]. Для более лучшее понимания рекомендуется обратиться к таблице истинности.
[math]s_0[/math] |
[math]s_1[/math] |
[math]x_0[/math] |
[math]x_1[/math] |
[math]x_2[/math] |
[math]x_3[/math] |
[math]z[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{1}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{1}[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{0}[/math] |
[math]?[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]\textbf{1}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]?[/math] |
[math]?[/math] |
[math]?[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math]
|
Логическая схема мультиплексора
Заметим, что дешифратор имеет [math]n[/math] входов и [math]2^n[/math] выходов, причём на все выходы дешифратора подаётся [math]0[/math] кроме выхода [math]z_i[/math], на который подаётся [math]1[/math], где [math]i[/math] — число, которое кодируется его входами.
Тогда давайте построим дешифратор [math]n[/math]-to-[math]2^n[/math] (это значит, что у дешифратора имеется [math]n[/math] входов и [math]2^n[/math] выходов), на вход ему подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math], а потом с помощью гейта [math]AND[/math] соединим выход [math]y_i[/math] дешифратора с входом [math]x_i[/math] мультиплексора, потом соединим все гейты с выходом [math]z[/math]. Давайте разберёмся, почему эта схема правильная: очевидно, что если входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math] [math]s_{n-1}[/math] кодируют вход [math]i[/math], то это значит, что только [math]y_i[/math] выход дешифратора будет иметь [math]1[/math], тогда как на остальных выходах будет [math]0[/math], значит, что значения на входах [math]x_0[/math], [math]x_1[/math], [math]\ldots[/math], [math]x_{i-1}[/math], [math]x_{i+1}[/math], [math]\ldots[/math], [math]x_{2^n-1}[/math] на ответ никак повлиять не могут. Теперь, если на входе [math]x_i[/math] было [math]0[/math], то на выходе [math]z[/math] будет [math]0[/math], если же на входе [math]x_i[/math] был [math]1[/math], то на выходе [math]z[/math] будет [math]1[/math].
Логическая схема мультиплексора [math]8[/math]-to- [math]1[/math]
|
Принцип работы демультиплексора
[math]1[/math]-to-
[math]2[/math] демультиплексор
[math]1[/math]-to-
[math]4[/math] демультиплексор
Демультиплексор 1-to-2
Рассмотрим демультиплексор [math]1[/math]-to-[math]2[/math] (это значит, что у демультиплексора два выхода). Если на вход [math]s[/math] подать значение [math]0[/math], то на выход [math]z_0[/math] будет подаваться то же значение, которое подаётся на вход [math]y[/math], а на выход [math]z_1[/math] будет подаваться [math]0[/math]. Если же на вход [math]s[/math] подать значение [math]1[/math], то на выход [math]z_0[/math] будет подаваться значение [math]0[/math], а на выход [math]z_1[/math] то же значение, которое будет подаваться на вход [math]y[/math]. Для более лучшего понимания посмотрим на таблицу истинности.
[math]s[/math] |
[math]y[/math] |
[math]z_0[/math] |
[math]z_1[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]\textbf{1}[/math]
|
Демультиплексор 1-to-4
Также рассмотрим демультиплексор [math]1[/math]-to-[math]4[/math] (это значит, что у демультиплексора четыре выхода). Теперь у нас уже есть два входа [math]s_0[/math] и [math]s_1[/math], которые определяют, на какой из выходов [math]z_0[/math], [math]z_1[/math], [math]z_2[/math] или [math]z_3[/math] будет подаваться значение [math]y[/math], тогда как на остальные выходы будет подаваться [math]0[/math]. В случае, когда [math]s_0 = s_1 = 0[/math], то на выход [math]z_0[/math] будет подаваться значение на входе [math]y[/math], тогда как на [math]z_1[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math]. Если же [math]s_0 = 1[/math] и [math]s_1 = 0[/math], то на выходы [math]z_0[/math], [math]z_2[/math] и [math]z_3[/math] будет подаваться [math]0[/math], а на выход [math]z_1[/math] будет подаваться то же, что подаётся на вход [math]y[/math]. Аналогично разбираются случаи [math]s_0 = 0[/math], [math]s_1 = 1[/math] и [math]s_0 = s_1 = 1[/math]. Для более лучшего понимания посмотрим на таблицу истинности.
[math]s_0[/math] |
[math]s_1[/math] |
[math]y[/math] |
[math]z_0[/math] |
[math]z_1[/math] |
[math]z_2[/math] |
[math]z_3[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]0[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]0[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]0[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]0[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]\textbf{0}[/math] |
[math]0[/math]
|
[math]\textbf{0}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]\textbf{1}[/math] |
[math]0[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{0}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]0[/math] |
[math]\textbf{0}[/math]
|
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]\textbf{1}[/math] |
[math]0[/math] |
[math]0[/math] |
[math]0[/math] |
[math]\textbf{1}[/math]
|
Логическая схема демультиплексора
Построим схему, аналогичную схеме мультиплексора.
Тогда давайте построим дешифратор, [math]n[/math]-to-[math]2^n[/math], на входы дешифратора подадим входы [math]s_0[/math], [math]s_1[/math], [math]\ldots[/math], [math]s_{n-1}[/math], а выходы этого дешифратора мы обозначим как [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math]. Поставим [math]2^n[/math] гейтов [math]AND[/math] и соединим каждый из выходов дешифратора [math]y_0[/math], [math]y_1[/math], [math]\ldots[/math], [math]y_{2^n-1}[/math] со входом [math]x[/math] с помощью гейта [math]AND[/math], потом соединим соответственные гейты с выходами [math]z_0[/math], [math]z_1[/math], [math]\ldots[/math], [math]z_{2^n-1}[/math], причем мы соединим гейт [math]AND[/math] с выходом [math]z_i[/math], если на этот гейт приходится выход дешифратора [math]y_i[/math].
Логическая схема демультиплексора [math]1[/math]-to- [math]8[/math]
|
Применение мультиплексора и демультиплексора в реальной жизни
Мультиплексоры и демультиплексоры часто используются в электронных схемах.
В качестве примера можно рассмотреть использование мультиплексоров для разделения на временные слоты и предоставления каждому объекту логической цепи свой слот, во время которого можно обмениваться данными с другими объектами. Такой способ позволяет использовать как можно меньше проводов для соединения объектов между собою. Такой принцип применяется при построении телефонных станций, которые соединяются с помощью одного провода, а для обеспечения помехоустойчивой связи используются временные слоты, в которые только одна из станций может обмениваться данными с остальными.
Также мультиплексоры и демультиплексоры используются в современных телефонах для обеспечения генерации сигналов в голосовые сообщения, поскольку позволяют с помощью малого (порядка [math]30[/math] входов) воспроизводить любой сигнал с частотой, которую может услышать человеческое ухо.
Огромную роль они играют также и в производстве компьютеров.
Логическая схема модуля памяти на [math]8[/math] бит
|
См. также
Источники информации