Группы. Действие группы на множестве — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 8: Строка 8:
 
== Примеры ==
 
== Примеры ==
 
* TODO
 
* TODO
 +
 +
== Эквивалентность по группе ==
 +
{{Определение
 +
|id=eq
 +
|definition=Пусть группа <tex>G</tex> действует на множестве <tex>X</tex>. Введем на <tex>X</tex> '''отношение эквивалентности''' <tex>\sim</tex> для <tex>x, y \in X</tex>: <tex>x \sim y</tex>, если <tex>\exists g \in G : x = g \cdot y</tex>.
 +
}}
  
 
== Орбита и стабилизатор ==
 
== Орбита и стабилизатор ==
Строка 15: Строка 21:
 
}}
 
}}
 
Иными словами, орбитой элемента множества <tex>X</tex> в группе <tex>G</tex> называется порожденный им класс эквивалентности по отношению <tex>\sim</tex>.
 
Иными словами, орбитой элемента множества <tex>X</tex> в группе <tex>G</tex> называется порожденный им класс эквивалентности по отношению <tex>\sim</tex>.
 +
{{Определение
 +
|id=point
 +
|definition=Элемент <tex>x \in X</tex> называется '''неподвижной точкой''' элемента <tex>g \in G</tex>, если <tex>g \cdot x = x</tex>
 +
}}
 
{{Определение
 
{{Определение
 
|id=stabilizer  
 
|id=stabilizer  
|definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' элемента <tex>g \in G</tex> называется множество: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex>
+
|definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' элемента <tex>g \in G</tex> называется множество его неподвижных точек: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex>
 
}}
 
}}

Версия 22:35, 25 декабря 2018

Определение:
Группа [math]G[/math] действует на множестве [math]X[/math], если задано отображение [math]G \times X \rightarrow X[/math] (обозначается [math]g \cdot x[/math]), такое что для любого [math]x \in X[/math], а также для любых [math]g_1, g_2 \in G[/math] оно обладает свойствами:
  1. [math](g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)[/math]
  2. [math]\varepsilon \cdot x = x[/math]


Примеры

  • TODO

Эквивалентность по группе

Определение:
Пусть группа [math]G[/math] действует на множестве [math]X[/math]. Введем на [math]X[/math] отношение эквивалентности [math]\sim[/math] для [math]x, y \in X[/math]: [math]x \sim y[/math], если [math]\exists g \in G : x = g \cdot y[/math].


Орбита и стабилизатор

Определение:
Пусть группа [math]G[/math] действует на множество [math]X[/math]. Тогда орбитой элемента [math]x \in X[/math] называется множество: [math]Orb(x) = \{y \in X \mid \exists g \in G : g \cdot x = y\}[/math]

Иными словами, орбитой элемента множества [math]X[/math] в группе [math]G[/math] называется порожденный им класс эквивалентности по отношению [math]\sim[/math].

Определение:
Элемент [math]x \in X[/math] называется неподвижной точкой элемента [math]g \in G[/math], если [math]g \cdot x = x[/math]


Определение:
Пусть группа [math]G[/math] действует на множество [math]X[/math]. Тогда стабилизатором элемента [math]g \in G[/math] называется множество его неподвижных точек: [math]St(g) = \{x \in X \mid g \cdot x = x\}[/math]