Группы. Действие группы на множестве — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|id=group_action  
 
|id=group_action  
|definition=Группа <tex>G</tex> '''действует на множестве''' <tex>X</tex>, если задано отображение <tex>G \times X \rightarrow X</tex> (обозначается <tex>g \cdot x</tex>), такое что для любого <tex>x \in X</tex>, а также для любых <tex>g_1, g_2 \in G</tex> оно обладает свойствами:
+
|definition=[[Группа]] <tex>G</tex> '''действует на множестве''' <tex>X</tex>, если задано отображение <tex>G \times X \rightarrow X</tex> (обозначается <tex>g \cdot x</tex>), такое что для любого <tex>x \in X</tex>, а также для любых <tex>g_1, g_2 \in G</tex> оно обладает свойствами:
 
# <tex>(g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)</tex>
 
# <tex>(g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)</tex>
# <tex>\varepsilon \cdot x = x</tex>
+
# <tex>e \cdot x = x</tex>
 
}}
 
}}
  
Строка 18: Строка 18:
 
|statement=Отношение <tex>\sim</tex> является отношением эквивалентности.
 
|statement=Отношение <tex>\sim</tex> является отношением эквивалентности.
 
|proof=
 
|proof=
# Рефлексивность. Для любого <tex>x \in X</tex> верно <tex>x = \varepsilon \cdot x</tex>, значит <tex>x \sim x</tex>.
+
# Рефлексивность. Для любого <tex>x \in X</tex> верно <tex>x = e \cdot x</tex>, значит <tex>x \sim x</tex>.
# Симметричность. Пусть <tex>x \sim y</tex> для некоторых <tex>x, y \in X</tex>. Тогда существует <tex>g \in G</tex>, такое что <tex>x = g \cdot y</tex>. Пользуясь свойствами групп, получаем следующие равенства: <tex>g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = (g^{-1} \cdot g) \cdot y = \varepsilon \cdot y = y</tex>. То есть <tex>g^{-1} \cdot x = y</tex>. Значит, <tex>y \sim x</tex>.
+
# Симметричность. Пусть <tex>x \sim y</tex> для некоторых <tex>x, y \in X</tex>. Тогда существует <tex>g \in G</tex>, такое что <tex>x = g \cdot y</tex>. Пользуясь свойствами групп, получаем следующие равенства: <tex>g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = (g^{-1} \cdot g) \cdot y = e \cdot y = y</tex>. То есть <tex>g^{-1} \cdot x = y</tex>. Значит, <tex>y \sim x</tex>.
 
# Транзитивность. Пусть <tex>x \sim y</tex> и <tex>y \sim z</tex> для некоторых <tex>x, y, z \in X</tex>. Тогда существуют такие <tex>g_1, g_2 \in G</tex>, что <tex>x = g_1 \cdot y</tex>, а <tex>y = g_2 \cdot z</tex>. Отсюда следует, что <tex>x = g_1 \cdot (g_2 \cdot z) = (g_1 \cdot g_2) \cdot z</tex>. То есть, <tex>x \sim z</tex>.
 
# Транзитивность. Пусть <tex>x \sim y</tex> и <tex>y \sim z</tex> для некоторых <tex>x, y, z \in X</tex>. Тогда существуют такие <tex>g_1, g_2 \in G</tex>, что <tex>x = g_1 \cdot y</tex>, а <tex>y = g_2 \cdot z</tex>. Отсюда следует, что <tex>x = g_1 \cdot (g_2 \cdot z) = (g_1 \cdot g_2) \cdot z</tex>. То есть, <tex>x \sim z</tex>.
 
}}
 
}}

Версия 22:59, 25 декабря 2018

Определение:
Группа [math]G[/math] действует на множестве [math]X[/math], если задано отображение [math]G \times X \rightarrow X[/math] (обозначается [math]g \cdot x[/math]), такое что для любого [math]x \in X[/math], а также для любых [math]g_1, g_2 \in G[/math] оно обладает свойствами:
  1. [math](g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)[/math]
  2. [math]e \cdot x = x[/math]


Примеры

  • TODO

Эквивалентность по группе

Определение:
Пусть группа [math]G[/math] действует на множестве [math]X[/math]. Введем на [math]X[/math] отношение эквивалентности [math]\sim[/math] для [math]x, y \in X[/math]: [math]x \sim y[/math], если [math]\exists g \in G : x = g \cdot y[/math]. Тогда, если [math]x \sim y[/math], то говорят, что [math]x[/math] и [math]y[/math] равны с точностью до группы.
Утверждение:
Отношение [math]\sim[/math] является отношением эквивалентности.
[math]\triangleright[/math]
  1. Рефлексивность. Для любого [math]x \in X[/math] верно [math]x = e \cdot x[/math], значит [math]x \sim x[/math].
  2. Симметричность. Пусть [math]x \sim y[/math] для некоторых [math]x, y \in X[/math]. Тогда существует [math]g \in G[/math], такое что [math]x = g \cdot y[/math]. Пользуясь свойствами групп, получаем следующие равенства: [math]g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = (g^{-1} \cdot g) \cdot y = e \cdot y = y[/math]. То есть [math]g^{-1} \cdot x = y[/math]. Значит, [math]y \sim x[/math].
  3. Транзитивность. Пусть [math]x \sim y[/math] и [math]y \sim z[/math] для некоторых [math]x, y, z \in X[/math]. Тогда существуют такие [math]g_1, g_2 \in G[/math], что [math]x = g_1 \cdot y[/math], а [math]y = g_2 \cdot z[/math]. Отсюда следует, что [math]x = g_1 \cdot (g_2 \cdot z) = (g_1 \cdot g_2) \cdot z[/math]. То есть, [math]x \sim z[/math].
[math]\triangleleft[/math]

Орбита и стабилизатор

Определение:
Пусть группа [math]G[/math] действует на множество [math]X[/math]. Тогда орбитой элемента [math]x \in X[/math] называется множество: [math]Orb(x) = \{y \in X \mid \exists g \in G : g \cdot x = y\}[/math]

Иными словами, орбитой элемента множества [math]X[/math] в группе [math]G[/math] называется порожденный им класс эквивалентности по отношению [math]\sim[/math].

Определение:
Элемент [math]x \in X[/math] называется неподвижной точкой элемента [math]g \in G[/math], если [math]g \cdot x = x[/math]


Определение:
Пусть группа [math]G[/math] действует на множество [math]X[/math]. Тогда стабилизатором элемента [math]g \in G[/math] называется множество его неподвижных точек: [math]St(g) = \{x \in X \mid g \cdot x = x\}[/math]