Группы. Действие группы на множестве — различия между версиями
Perveevm (обсуждение | вклад) |
Perveevm (обсуждение | вклад) |
||
| Строка 36: | Строка 36: | ||
== Примеры == | == Примеры == | ||
| − | + | В качестве примера рассмотрим ожерелья, состоящие из <tex>6</tex> бусин, которые бывают красного и черного цвета. Таким образом, множество <tex>X</tex> — это множество всевозможных ожерелий из <tex>6</tex> бусин, окрашенных в один из двух цветов. Несложно понять, что <tex>|X| = 2^6 = 64</tex>. | |
| + | Теперь введем группу <tex>G</tex>, в которой будет <tex>6</tex> элементов: <tex>g_0, g_1, \dots g_5</tex>, где <tex>g_i</tex> будет означать поворот ожерелья на угол <tex>\dfrac{2\pi i}{6}</tex> против часовой стрелки. | ||
| + | {| | ||
| + | |[[Файл:First.png|thumb|Ожерелье <tex>x</tex>]] | ||
| + | |[[Файл:Second.png|thumb|Ожерелье <tex>g_1 \cdot x</tex>]] | ||
| + | |} | ||
| + | Таким образом, правое ожерелье получено из левого путем действия на него элементом <tex>g_1</tex>. Из этого следуют, что левое и правое ожерелья '''равны с точностью до группы''' <tex>G</tex>, а значит они находятся в одном классе эквивалентности. | ||
| + | Теперь в качестве примера рассмотрим орбиту левого ожерелья — все элементы множества <tex>X</tex>, полученные из элемента <tex>x</tex> путем поворотов на <tex>6</tex> различных углов. | ||
| + | {| | ||
| + | |[[Файл:First.png|thumb|Ожерелье <tex>g_0 \cdot x</tex>]] | ||
| + | |[[Файл:Second.png|thumb|Ожерелье <tex>g_1 \cdot x</tex>]] | ||
| + | |[[Файл:Third.png|thumb|Ожерелье <tex>g_2 \cdot x</tex>]] | ||
| + | |[[Файл:Fourth.png|thumb|Ожерелье <tex>g_3 \cdot x</tex>]] | ||
| + | |[[Файл:Fifth.png|thumb|Ожерелье <tex>g_4 \cdot x</tex>]] | ||
| + | |[[Файл:Sixth.png|thumb|Ожерелье <tex>g_5 \cdot x</tex>]] | ||
| + | |} | ||
== См. также == | == См. также == | ||
Версия 20:46, 26 декабря 2018
| Определение: |
Группа действует на множестве , если задано отображение (обозначается ), такое что для любого , а также для любых оно обладает свойствами:
|
Содержание
Эквивалентность по группе
| Определение: |
| Пусть группа действует на множестве . Введем на отношение эквивалентности для : , если . Тогда, если , то говорят, что и равны с точностью до группы. |
| Утверждение: |
Отношение является отношением эквивалентности. |
|
Орбита и стабилизатор
| Определение: |
| Пусть группа действует на множество . Тогда орбитой элемента называется множество: . Множество всех орбит обозначается так: . |
Иными словами, орбитой элемента множества в группе называется порожденный им класс эквивалентности по отношению .
| Определение: |
| Элемент называется неподвижной точкой элемента , если |
| Определение: |
| Пусть группа действует на множество . Тогда стабилизатором элемента называется множество его неподвижных точек: |
Примеры
В качестве примера рассмотрим ожерелья, состоящие из бусин, которые бывают красного и черного цвета. Таким образом, множество — это множество всевозможных ожерелий из бусин, окрашенных в один из двух цветов. Несложно понять, что . Теперь введем группу , в которой будет элементов: , где будет означать поворот ожерелья на угол против часовой стрелки.
Таким образом, правое ожерелье получено из левого путем действия на него элементом . Из этого следуют, что левое и правое ожерелья равны с точностью до группы , а значит они находятся в одном классе эквивалентности.
Теперь в качестве примера рассмотрим орбиту левого ожерелья — все элементы множества , полученные из элемента путем поворотов на различных углов.





