Группы. Действие группы на множестве — различия между версиями
Perveevm (обсуждение | вклад) |
Perveevm (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|id=group_action | |id=group_action | ||
− | |definition=[[Группа]] <tex>G</tex> '''действует на множестве''' <tex>X</tex>, если задано отображение <tex>G \times X \rightarrow X</tex> (обозначается <tex>g \cdot x</tex>), такое что для любого <tex>x \in X</tex>, а также для любых <tex>g_1, g_2 \in G</tex> оно обладает свойствами: | + | |definition=[[Группа]] <tex>G</tex> '''действует на множестве''' (англ. ''acts on a set'') <tex>X</tex>, если задано отображение <tex>G \times X \rightarrow X</tex> (обозначается <tex>g \cdot x</tex>), такое что для любого <tex>x \in X</tex>, а также для любых <tex>g_1, g_2 \in G</tex> оно обладает свойствами: |
# <tex>(g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)</tex> (здесь <tex>g_1 \cdot g_2</tex> — групповая операция) | # <tex>(g_1 \cdot g_2) \cdot x = g_1 \cdot (g_2 \cdot x)</tex> (здесь <tex>g_1 \cdot g_2</tex> — групповая операция) | ||
# <tex>e \cdot x = x</tex> | # <tex>e \cdot x = x</tex> |
Версия 22:27, 26 декабря 2018
Определение: |
Группа действует на множестве (англ. acts on a set) , если задано отображение (обозначается ), такое что для любого , а также для любых оно обладает свойствами:
|
Содержание
Эквивалентность по группе
Определение: |
Пусть группа отношение эквивалентности для : , если . Тогда, если , то говорят, что и равны с точностью до группы. | действует на множестве . Введем на
Утверждение: |
Отношение является отношением эквивалентности. |
|
Орбита и стабилизатор
Определение: |
Пусть группа | действует на множество . Тогда орбитой (англ. orbit) элемента называется множество: . Множество всех орбит обозначается так: .
Иными словами, орбитой элемента множества
в группе называется порожденный им класс эквивалентности по отношению .Определение: |
Элемент | называется неподвижной точкой элемента , если
Определение: |
Пусть группа | действует на множество . Тогда стабилизатором (англ. stabilizer) элемента называется множество его неподвижных точек:
Примеры
В качестве примера рассмотрим ожерелья, состоящие из
бусин, которые бывают красного и черного цвета. Таким образом, множество — это множество всевозможных ожерелий из бусин, окрашенных в один из двух цветов. Несложно понять, что . Теперь введем группу , в которой будет элементов: , где будет означать поворот ожерелья на угол против часовой стрелки.Таким образом, правое ожерелье получено из левого путем действия на него элементом
. Из этого следуют, что левое и правое ожерелья равны с точностью до группы , а значит они находятся в одном классе эквивалентности.Теперь в качестве примера рассмотрим орбиту левого ожерелья — все элементы множества
, полученные из элемента путем поворотов на различных углов.