Группы. Действие группы на множестве — различия между версиями
Perveevm (обсуждение | вклад) |
Perveevm (обсуждение | вклад) |
||
Строка 36: | Строка 36: | ||
== Примеры == | == Примеры == | ||
− | В качестве примера рассмотрим ожерелья, состоящие из <tex>6</tex> бусин, которые бывают красного и черного цвета. Таким образом, множество <tex>X</tex> — это множество всевозможных ожерелий из <tex>6</tex> бусин, окрашенных в один из двух цветов | + | В качестве примера рассмотрим ожерелья, состоящие из <tex>6</tex> бусин, которые бывают красного и черного цвета. Таким образом, множество <tex>X</tex> — это множество всевозможных ожерелий из <tex>6</tex> бусин, окрашенных в один из двух цветов. |
Теперь введем группу <tex>G</tex>, в которой будет <tex>6</tex> элементов: <tex>g_0, g_1, \dots g_5</tex>, где <tex>g_i</tex> будет означать поворот ожерелья на угол <tex>\dfrac{2\pi i}{6}</tex> против часовой стрелки. | Теперь введем группу <tex>G</tex>, в которой будет <tex>6</tex> элементов: <tex>g_0, g_1, \dots g_5</tex>, где <tex>g_i</tex> будет означать поворот ожерелья на угол <tex>\dfrac{2\pi i}{6}</tex> против часовой стрелки. | ||
{| | {| |
Версия 22:39, 26 декабря 2018
Определение: |
Группа действует на множестве (англ. acts on a set) , если задано отображение (обозначается ), такое что для любого , а также для любых оно обладает свойствами:
|
Содержание
Эквивалентность по группе
Определение: |
Пусть группа отношение эквивалентности для : , если . Тогда, если , то говорят, что и равны с точностью до группы. | действует на множестве . Введем на
Утверждение: |
Отношение является отношением эквивалентности. |
|
Орбита и стабилизатор
Определение: |
Пусть группа | действует на множество . Тогда орбитой (англ. orbit) элемента называется множество: . Множество всех орбит обозначается так: .
Иными словами, орбитой элемента множества
в группе называется порожденный им класс эквивалентности по отношению .Определение: |
Элемент | называется неподвижной точкой (англ. fixed point) элемента , если
Определение: |
Пусть группа | действует на множество . Тогда стабилизатором (англ. stabilizer) элемента называется множество его неподвижных точек:
Примеры
В качестве примера рассмотрим ожерелья, состоящие из
бусин, которые бывают красного и черного цвета. Таким образом, множество — это множество всевозможных ожерелий из бусин, окрашенных в один из двух цветов. Теперь введем группу , в которой будет элементов: , где будет означать поворот ожерелья на угол против часовой стрелки.Таким образом, правое ожерелье получено из левого путем действия на него элементом
. Из этого следуют, что левое и правое ожерелья равны с точностью до группы , а значит они находятся в одном классе эквивалентности.Теперь в качестве примера рассмотрим орбиту левого ожерелья — все элементы множества
, полученные из элемента путем поворотов на различных углов.