Алгоритм вырезания соцветий — различия между версиями
Kot (обсуждение | вклад) |
Kot (обсуждение | вклад) (→Алгоритм нахождения паросочетания в недвудольном графе) |
||
Строка 33: | Строка 33: | ||
}} | }} | ||
− | ==Алгоритм | + | ==Алгоритм вырезания соцветий== |
Пусть дан произвольный граф <tex>G(V, E)</tex> и требуется найти максимальное паросочетание в нём. <br> | Пусть дан произвольный граф <tex>G(V, E)</tex> и требуется найти максимальное паросочетание в нём. <br> | ||
− | + | Алгоритм строит лес, содержащий деревья дополняющих путей в | |
− | + | Разобьем каждое неориентированное ребро <tex>(w, v)</tex> на два ориентированных ребра <tex>(w, v)</tex> и <tex>(v, w)</tex>. | |
− | |||
− | |||
− |
Версия 20:59, 15 января 2011
Паросочетание в недвудольном графе
Определение: |
Соцветие | графа - цикл, состоящий из ребер, из которых только входят в соцветие .
Определение: |
Cжатие соцветия - граф | , полученный из сжатием соцветия в одну псевдо-вершину.
Определение: |
База соцветия - вершина соцветия, в которую входит ребро не из данного соцветия. |
Теорема Эдмондса
Теорема: |
Пусть в графе существует соцветие .Тогда в существует удлиняющий путь тогда и только тогда, когда существует удлиняющий путь в |
Доказательство: |
Пусть граф
Пусть путь
Пусть путь Рассмотрим отдельно случай, когда Пусть теперь путь начинается со сжатого соцветия , т.е. имеет вид . Тогда в соцветии найдётся соответствующая вершина , которая связана ребром с . Заметим, что из базы соцветия всегда найдётся чередующийся путь чётной длины до вершины . Учитывая всё вышесказанное, получаем, что путь является увеличивающим путём в графе . проходит через псевдо-вершину , но не начинается и не заканчивается в ней. Тогда в есть два ребра, проходящих через , пусть это и . Одно из них обязательно должно принадлежать паросочетанию, однако, так как база цветка не насыщена, а все остальные вершины цикла цветка насыщены рёбрами цикла, то мы приходим к противоречию (это эквивалентно случаю отсутствия ребра из ). Таким образом, этот случай просто невозможен. Теорема доказана. в |
Алгоритм вырезания соцветий
Пусть дан произвольный граф
Алгоритм строит лес, содержащий деревья дополняющих путей в Разобьем каждое неориентированное ребро
на два ориентированных ребра и .