Теорема о декомпозиционном барьере — различия между версиями
Leugenea (обсуждение | вклад) |
Leugenea (обсуждение | вклад) (Маленькая корректировка формулировки) |
||
Строка 3: | Строка 3: | ||
о декомпозиционном барьере | о декомпозиционном барьере | ||
|statement= | |statement= | ||
− | Существуют положительные вещественные числа <tex>c_{1}</tex> и <tex>c_{2}</tex>, такие что для любых натуральных <tex>V</tex> и <tex>E</tex>, удовлетворяющих неравенствам <tex>c_{1}V \le E \le c_{2}V^2</tex>, существует [[Определение сети, потока|сеть]] <tex>G</tex> с <tex>V</tex> вершинами и <tex>E</tex> ребрами | + | Существуют положительные вещественные числа <tex>c_{1}</tex> и <tex>c_{2}</tex>, такие что для любых натуральных <tex>V</tex> и <tex>E</tex>, удовлетворяющих неравенствам <tex>c_{1}V \le E \le c_{2}V^2</tex>, существует [[Определение сети, потока|сеть]] <tex>G</tex> с <tex>V</tex> вершинами и <tex>E</tex> ребрами, такая что для любого максимального потока <tex>f</tex> в <tex>G</tex>, любая его остаточная декомпозиция должна содержать <tex>\Omega (E)</tex> слагаемых (т.е. путей или циклов), причем каждый из путей (циклов) в декомпозиции должен иметь длину <tex>\Omega (V)</tex>. |
|proof= | |proof= | ||
[[Файл:example.png|200px|thumb|right|Пример для <tex>V = 16</tex>, в который надо добавить нужное количество ребер]] | [[Файл:example.png|200px|thumb|right|Пример для <tex>V = 16</tex>, в который надо добавить нужное количество ребер]] |
Версия 22:17, 15 января 2011
Теорема (о декомпозиционном барьере): |
Существуют положительные вещественные числа сеть с вершинами и ребрами, такая что для любого максимального потока в , любая его остаточная декомпозиция должна содержать слагаемых (т.е. путей или циклов), причем каждый из путей (циклов) в декомпозиции должен иметь длину . и , такие что для любых натуральных и , удовлетворяющих неравенствам , существует |
Доказательство: |
Используются
и ( ). Чтобы получить искомую сеть, строится сеть, изображенный на рисунке, после чего добавляется нужное количество ребер из в (а именно, ребро). Пропускные способности ребер из в равны , остальных — (или просто достаточно большое число, например, ).Теперь докажем саму теорему:
|