Сортировка подсчетом сложных объектов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Переписал текст, удалил старую картинку, добавил новый раздел и новую картинку.)
 
(не показано 11 промежуточных версий 3 участников)
Строка 1: Строка 1:
{{В разработке}}
+
#перенаправление [[Сортировка подсчётом#Сортировка сложных объектов]]
 
 
Иногда бывает очень желательно применить быстрый алгоритм [[Сортировка подсчетом|сортировки подсчетом]] для упорядочивания набора каких-либо "сложных" данных. Под "сложными объектами" здесь подразумеваются структуры, содержащие в себе несколько полей. Одно из них мы выделим и назовем ключом, сортировка будет идти именно по нему (предполагается, что значения, принимаемые ключом - целые числа в диапазоне от <tex>0</tex> до <tex>k-1</tex>).
 
 
 
Мы не сможем использовать здесь в точности тот же алгоритм, что и для сортировки подсчетом обычных целых чисел, потому что в наборе могут быть различные структуры, имеющие одинаковые ключи. Существует два способа справиться с этой проблемой {{---}} использовать списки для хранения структур в отсортированном массиве или заранее посчитать количество структур с одинаковыми ключами для каждого значения ключа. 
 
 
 
== Использование списков ==
 
Пусть далее исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>.
 
 
 
Сделаем из каждой ячейки массива <tex>B</tex> список, в который будем добавлять структуры с одинаковыми ключами.
 
 
 
[[Файл:List_solution.png|500px|]]
 
 
 
Этот вариант плох тем, что надо поддерживать сам список, что не является самым простым решением. Еще придется хранить дополнительную информацию в виде ссылок на следующий элемент в списке. И кроме того, такое представление отсортированного массива неудобно в использовании.
 
Избавиться от этих недостатков можно используя другую модификацию алгоритма сортировки подсчетом.
 
 
 
== Подсчет числа различных ключей ==
 
Здесь исходная последовательность из <tex>n</tex> структур хранится в массиве <tex>A</tex>, а отсортированная - в массиве <tex>B</tex> того же размера. Кроме того используется вспомогательный массив <tex>P</tex> с индексами от <tex>0</tex> до <tex>k-1</tex>.
 
 
 
* Пройдем по исходному массиву <tex>A</tex> и запишем в <tex>P[i]</tex> количество структур, ключ которых равен <tex>i</tex>. Это можно сделать за <tex> O(n)</tex>.
 
* Условно разобьем массив <tex>B</tex> на <tex>k</tex> блоков, длина каждого из которых равна соответственно <tex>P[1]</tex>, <tex>P[2]</tex>, ..., <tex>P[k]</tex>.
 
* Теперь массив <tex>P</tex> нам больше не нужен. Превратим его в массив, хранящий в <tex>P[i]</tex> сумму элементов от <tex>0</tex> до <tex>i-1</tex> старого массива <tex>P</tex>. Это делается за один пробег по массиву <tex>P</tex>, то есть имеет сложность <tex> O(k)</tex>.
 
* Произведем саму сортировку. Еще раз пройдем по исходному массиву <tex>A</tex> и для всех <tex>i \in [0, n-1]</tex> будем помещать структуру <tex>A[i]</tex> в массив <tex>B</tex> на место <tex>P[A[i].key]-1</tex>. Здесь <tex>A[i].key</tex> {{---}} это ключ структуры, находящейся в массиве <tex>A</tex> на <tex>i</tex>-том месте. Затем увеличим <tex>P[A[i].key]</tex> на единицу.
 
 
 
Таким образом после завершения алгоритма в <tex>B</tex> будет содержаться исходная последовательность в отсортированном виде (так как блоки расположены по возрастанию соответствующих ключей).
 
 
 
Стоит также отметить, что эта сортировка является устойчивой, так как два элемента с одинаковыми ключами будут добавлены в том же порядке, в каком просматривались в исходном массиве <tex>A</tex>.
 
 
 
==Источники==
 
* [http://ru.wikipedia.org/wiki/Сортировка_подсчётом Википедия {{---}} Сортировка подсчетом]
 
* [http://en.wikipedia.org/wiki/Counting_sort Wikipedia {{---}} Counting sort]
 
* Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 224-226.
 
 
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Сортировки]]
 

Текущая версия на 00:09, 1 февраля 2019