Байесовская классификация — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: « == Вероятностная постановка задачи классификации == Пусть $X$ множество объектов, $Y$ конеч…»)
 
Строка 9: Строка 9:
 
* Имеется простая выборка $X^ℓ=(x_i, y_i)^ℓ_{i=1}$ из неизвестного распределения $p(x,y)=P_yp_y(x)$. Требуется построить ''эмпирические оценки'' априорных вероятностей $P'_y$ и функций правдоподобия $p'_y(x)$ для каждого из классов $y \in Y$.
 
* Имеется простая выборка $X^ℓ=(x_i, y_i)^ℓ_{i=1}$ из неизвестного распределения $p(x,y)=P_yp_y(x)$. Требуется построить ''эмпирические оценки'' априорных вероятностей $P'_y$ и функций правдоподобия $p'_y(x)$ для каждого из классов $y \in Y$.
 
* По известным плотностям распределения $p_y(x)$ и априорным вероятностям $P_y$ всех классов $y \in Y$ построить алгоритм $a(x)$, минимизирующий вероятность ошибочной классификации.
 
* По известным плотностям распределения $p_y(x)$ и априорным вероятностям $P_y$ всех классов $y \in Y$ построить алгоритм $a(x)$, минимизирующий вероятность ошибочной классификации.
 
== Задача восстановления плотности распределения ==
 
Требуется оценить плотность вероятностного распределения $p(x,y) =P_yp_y(x)$, по выборке $X^ℓ_y=\{(x_i,y_i)^ℓ_{i=1} | y_i=y\}$.
 
  
 
Априорные вероятности классов $P_y$ можно оценить согласно закону больших чисел, тогда частота появления объектов каждого из классов $P'_y=\frac{ℓ_y}{ℓ}$ где $ℓ_y=|X^ℓ_y|, y \in Y$
 
Априорные вероятности классов $P_y$ можно оценить согласно закону больших чисел, тогда частота появления объектов каждого из классов $P'_y=\frac{ℓ_y}{ℓ}$ где $ℓ_y=|X^ℓ_y|, y \in Y$
 
сходится по вероятности к $P_y$ при $ℓ_y→∞$. Чем больше длина выборки, тем точнее выборочная оценка $P'_y$.
 
сходится по вероятности к $P_y$ при $ℓ_y→∞$. Чем больше длина выборки, тем точнее выборочная оценка $P'_y$.
  
'''Наивный байесовский классификатор'''
+
== Наивный байесовский классификатор ==
 +
 
 +
Допустим, что объекты $x \in X$ описываются $n$ числовыми признаками $f_j:X→R,j= 1,...,n$. Обозначим через $x = (ξ_1,...,ξ_n)$ произвольный элемент пространства объектов $X=Rn$, где $ξ_j=f_j(x)$.
 +
 
 +
Предположим, что признаки $f_1(x),...,f_n(x)$ являются независимыми случайными величинами.
 +
Следовательно, функции правдоподобия классов представимы в виде:
 +
 
 +
<tex>
 +
p_y(x) = \prod^n_{i=1}p_{yi}(ξ_i)
 +
</tex>
  
{{Гипотеза | definition =
+
где $p_{yj}(ξ_j)$ плотность распределения значений $j$-го признака для класса $y$.
Признаки $f_1(x),...,f_n(x)$ являются независимыми случайными ве-личинами.
+
Алгоритмы классификации исходящие их этого предположения, называются ''наивными байесовскими''
Следовательно, функции правдоподобия классов представимы в виде
 
$p_y(x) = p{y1}(ξ_1)···p_{yn}(ξ_n), y \in Y$ где p_{yj}(ξ_j) плотность распределения значений $j$-го признака для класса $y$.
 
}}
 

Версия 20:11, 31 марта 2019

Вероятностная постановка задачи классификации

Пусть $X$ множество объектов, $Y$ конечное множество имён классов, множество $X×Y$ является вероятностным пространством с плотностью распределения $p(x,y)=P(y)p(x|y)$. Вероятности появления объектов каждого из классов $P_y=P(y)$ называются априорными вероятностями классов. Плотности распределения $p_y(x)=p(x|y)$ называются функциями правдоподобия классов.

Вероятностная постановка задачи классификации разделяется на две независимые подзадачи:

  • Имеется простая выборка $X^ℓ=(x_i, y_i)^ℓ_{i=1}$ из неизвестного распределения $p(x,y)=P_yp_y(x)$. Требуется построить эмпирические оценки априорных вероятностей $P'_y$ и функций правдоподобия $p'_y(x)$ для каждого из классов $y \in Y$.
  • По известным плотностям распределения $p_y(x)$ и априорным вероятностям $P_y$ всех классов $y \in Y$ построить алгоритм $a(x)$, минимизирующий вероятность ошибочной классификации.

Априорные вероятности классов $P_y$ можно оценить согласно закону больших чисел, тогда частота появления объектов каждого из классов $P'_y=\frac{ℓ_y}{ℓ}$ где $ℓ_y=|X^ℓ_y|, y \in Y$ сходится по вероятности к $P_y$ при $ℓ_y→∞$. Чем больше длина выборки, тем точнее выборочная оценка $P'_y$.

Наивный байесовский классификатор

Допустим, что объекты $x \in X$ описываются $n$ числовыми признаками $f_j:X→R,j= 1,...,n$. Обозначим через $x = (ξ_1,...,ξ_n)$ произвольный элемент пространства объектов $X=Rn$, где $ξ_j=f_j(x)$.

Предположим, что признаки $f_1(x),...,f_n(x)$ являются независимыми случайными величинами. Следовательно, функции правдоподобия классов представимы в виде:

[math] p_y(x) = \prod^n_{i=1}p_{yi}(ξ_i) [/math]

где $p_{yj}(ξ_j)$ плотность распределения значений $j$-го признака для класса $y$. Алгоритмы классификации исходящие их этого предположения, называются наивными байесовскими