Бинарное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
Строка 1: Строка 1:
 
== Определение ==
 
== Определение ==
 +
{{Определение
 +
|definition =
 
'''Бинарным отношением''' ''R'' из множества ''A'' в множество ''B'' называется подмножество прямого произведения ''A'' и ''B'' и обозначается:
 
'''Бинарным отношением''' ''R'' из множества ''A'' в множество ''B'' называется подмножество прямого произведения ''A'' и ''B'' и обозначается:
  
 
<math>R \subset \Alpha \times \Beta</math>
 
<math>R \subset \Alpha \times \Beta</math>
 
+
}}
  
 
Часто используют инфиксную форму записи:
 
Часто используют инфиксную форму записи:
Строка 11: Строка 13:
 
  <math>R \subset \Alpha \times \Alpha</math>
 
  <math>R \subset \Alpha \times \Alpha</math>
 
Примерами множеств с введёнными на них бинарными отношениями являются [[Ориентированный граф|графы]] и частично упорядоченные множества.
 
Примерами множеств с введёнными на них бинарными отношениями являются [[Ориентированный граф|графы]] и частично упорядоченные множества.
 +
 
== Свойства отношений ==
 
== Свойства отношений ==
 
Для <math>R \subset A^2</math> определены свойства:
 
Для <math>R \subset A^2</math> определены свойства:

Версия 00:52, 16 января 2011

Определение

Определение:
Бинарным отношением R из множества A в множество B называется подмножество прямого произведения A и B и обозначается: [math]R \subset \Alpha \times \Beta[/math]


Часто используют инфиксную форму записи: [math]aRb, \ (a,b) \subset R[/math]

Если A = B то R называют бинарными отношением на множестве A:

[math]R \subset \Alpha \times \Alpha[/math]

Примерами множеств с введёнными на них бинарными отношениями являются графы и частично упорядоченные множества.

Свойства отношений

Для [math]R \subset A^2[/math] определены свойства:

  1. Рефлексивность: [math]\mathcal {8} x \in A \ (xRx)[/math]
  2. Антирефлексивность: [math]\mathcal {8} x \in A \ (\neg xRx)[/math]
  3. Симметричность: [math]\mathcal {8} x,y \in A \ (xRy \Rightarrow yRx)[/math]
  4. Антисимметричность: [math]\mathcal {8} x,y \in A \ (xRy \land yRx \Rightarrow x = y)[/math]
  5. Транзитивность: [math]\mathcal {8} x,y,z \in A \ (xRy \land yRz \Rightarrow xRz)[/math]
  6. Полнота(линейность): [math]\mathcal {8} x,y \in A \ (xRy \lor yRx)[/math]
  7. Ассимметричность: [math]\mathcal {8} x,y \in A \ (xRy \Rightarrow \neg (yRx))[/math]

Виды отношений

Выделяются следующие виды отношений:

  • квазипорядка - рефлексивное транзитивное
  • эквивалентности - рефлексивное симметричное транзитивное
  • частичного порядка - рефлексивное антисимметричное транзитивное
  • строгого порядка -антирефлексивное антисимметричное транзитивное
  • линейного порядка -полное антисимметричное транзитивное
  • доминирования - антирефлексивное асимметричное

Примеры отношений

  • Примеры рефлексивных отношений: равенство, одновременность, сходство.
  • Примеры нерефлексвных отношений: «заботиться о», «развлекать», «нервировать».
  • Примеры транзитивных отношений: «больше», «меньше», «равно», «подобно», «выше», «севернее».
  • Примеры симметричных отношений: равенство (=), неравенство, отношение эквивалентности, подобия, одновременности, некоторые отношения родства (например, отношение братства).
  • Примеры антисимметричных отношений: больше, меньше, больше или равно.
  • Примеры асимметричных отношений: отношение «больше» (>) и «меньше» (<).

См. также

Ссылки